Studien zum Raman-Effekt.

Mitteilung 151: Benzolderivate XXIII (Ortho.Derivate).

Von

E. Herz.

257. Mitteilung aus dem physikalischen Institut der Techn. Hochschule Graz.

Mit 3 Abbildungen.

(Eingelangt am 30. November 1943. Vorgelegt in der Sitzung am 16. Dez. 1943.)

Nach der Analyse der Schwingungsspektren von Benzol und seiner monosubstituierten^{1,2}, sowie seiner in para-^{3,4} und meta-Stellung^{5,6} disubstituierten Derivate folgt nun jene der ortho-Diderivate. Die Verhältnisse liegen nier für die Deutung der Spektren insofern ungünstiger, als die 1,2substituierten Benzole nur mehr ein einziges Symmetrieelement (die Molekülebene) mit den zu Vergleichszwecken benötigten Monoderivaten gemeinsam haben. Bei den Meta-Derivaten kann die analoge Schwierigkeit durch Heranziehung der verhältnismäßig durchsichtigen Spektren der 1,3,5-Derivate teilweise kompensiert werden; bei den Ortho-Derivaten fehlt auch diese Hilfe.

Um so mehr Gewicht mußte daher auf eine möglichst breite experimentelle Basis gelegt werden; dementsprechend wurden Wiederholungsmessungen mit großer Dispersion und Bestimmungen des Polarisations-

² Mitteilung 131: K. W. F. Kohlrausch und H. Wittek, S.-B. Akad. Wiss. Wien, Abt. II b 150, 75 (1941); Mh. Chem. 74, 1 (1941).

⁶ Mitteilung 141: E. Herz und K. W. F. Kohlrausch, S.-B. Akad. Wiss. Wien, Abt. IIb 151, 109 (1942); Mh. Chem. 74, 175 (1942).

Monatshefte für Chemie. Bd. 76/1.

¹ Mitteilung 123: *H. Wittek*, S.-B. Akad. Wiss. Wien, Abt. IIb 150, 1 (1941); Mh. Chem. 73, 231 (1941).

³ Mitteilung 97: O. Paulsen, S.-B. Akad. Wiss. Wien, Abt. IIb 147, 244 (1939); Mh. Chem. 72, 244 (1939).

⁴ Mitteilung 98: K. W. F. Kohlrausch und O. Paulsen, S.-B. Akad. Wiss. Wien, Abt. IIb 147, 344 (1939); Mh. Chem. 72, 268 (1939).

⁵ Mitteilung 140: *E. Herz*, S.-B. Akad. Wiss. Wien, Abt. IIb 151, 94 (1942); Mh. Chem. 74, 160 (1942).

zustandes an den Ramanspektren die folgenden 21 Substanzen ortho- $X \cdot C_6H_4 \cdot Y$ durchgeführt:

Bei Jodanisol (*) fehlt die Aufnahme mit großer Dispersion; bei Veratrol (**) die Polarisationsmessung. Die Ergebnisse sind zahlenmäßig im Anhang zusammengestellt, zeichnerisch zum Großteil in den Abb. 1, 2, 3 verwertet.

Diskussion der Ergebnisse.

A. Der erwartete spektrale Übergang.

Der Leitgedanke bei der Analyse der "Ortho-Spektren" ist wieder die an sie zu stellende Forderung, daß ein spektraler Übergang vom Spektrum des "Stammkörpers", d. i. ein bezüglich der Symmetrie in ortho-Stellung gestörtes Benzol, etwa o-C₆H₄H₂′, zum Radikal, d. i. entweder o-C₆H₄ oder o-C₆H₄ · X, durchführbar sein muß. Die Veränderung der Symmetrie-

		0 0			0 0 2	
1, 2, 3, 4 C ₆ H ₂ X ₄		$D_{6h}: C_6E$	I ₆	$C_2'v: C_6H_4H_2'$	C2'v: C6H4X2	$C_s: C_6H_4X$
$9\omega + \nu + \delta$ $\delta = 1320$ $\nu = 3080$	$\begin{array}{c} \mathbf{A_{1g}}\\ \mathbf{B_{2u}}\\ \mathbf{E_{g^{+}}}\\ \mathbf{E_{g^{+}}}\\ \mathbf{E_{u^{-}}}\\ \mathbf{E_{u^{-}}}\end{array}$		$\begin{array}{l} \nu_{3}=3063\\ ; \ \delta_{2}\simeq1320]\\ \delta_{3}=1176\\ \nu_{6}=3047\\ \nu_{2}=3080)\\ (\delta_{6}=1037) \end{array}$	$\left. \right\}$ A ₁ ; p, a	$5\omega + 2\omega(X)$ $\delta = 1176,$ 1320 $\nu = 3063,$ 3080	9ω $4/2\omega(X)$
$8\omega + \nu + \delta$ $\delta = 1400$ $\nu = 3080$	$\begin{array}{c} \mathbf{A_{2g}} \\ \mathbf{B_{1u}} \\ \mathbf{E_{g^{+}}} \\ \mathbf{E_{g^{+}}} \\ \mathbf{E_{u^{-}}} \\ \mathbf{E_{u^{-}}} \end{array}$	$ \begin{bmatrix} \omega_3 = 1009; \\ \omega_2 = 606; \\ \omega_8 = 1595; \\ (\omega_6 = 1485; \end{bmatrix} $	$ \begin{bmatrix} \delta_1 \simeq 1400 \\ \nu_4 = 3060 \end{bmatrix} \\ \delta_4 = 1176 \\ \nu_5 = 3047 \\ \nu_1 = 3080) \\ (\delta_5 = 1037) $	$\left. \right\} B_{1}; dp, a$	$ \begin{array}{r} 4\omega + 2\omega({\rm X}) \\ \delta = 1176, \\ 1400 \\ \nu = 3060, \\ 3080 \end{array} $	$ \left\{\begin{array}{c} \mathbf{A} & \mathbf{4\delta} \\ 4\mathbf{\nu} \\ 4\mathbf{\nu} \end{array}\right\} $
$\begin{array}{l}4 \ \varGamma + \gamma \\ \gamma = 850\end{array}$	$\begin{array}{c} \mathbf{A_{1u}}\\ \mathbf{B_{2g}}\\ \mathbf{E_{u}^{+}}\\ \mathbf{E_{g}^{-}} \end{array}$	$ \begin{matrix}\\ [\Gamma_3 \simeq 500;\\ [\Gamma_2 = 406;\\ \end{matrix} \end{matrix} $	$ \begin{array}{c} & - \\ \gamma_1 \simeq 780] \\ \gamma_5 \simeq 690] \\ \gamma_3 = 850 \end{array} $	A_2 ; dp, ia	$\frac{2\Gamma + \Gamma(\mathbf{X})}{\gamma = 780,850}$	$\left \begin{array}{c}3 \\ A'' \\ P(\mathbf{X})\end{array}\right $
$rac{3}{\gamma}rac{\Gamma+\gamma}{\gamma}=850$	$\begin{array}{c} \mathbf{A_{2u}} \\ \mathbf{B_{1g}} \\ \mathbf{E_{u}^{+}} \\ \mathbf{E_{g}^{-}} \end{array}$	$[I_1 = 406;$	$(\gamma_6 = 671)$ $\gamma_4 \simeq 690]$ $\gamma_2 = 850$	$\left. \right\}$ B ₂ ; dp, a	$\Gamma + \Gamma (\mathbf{X})$ $\gamma = 690,850$	$\left \begin{array}{c} A & I & (A) \\ 4 & \gamma \end{array}\right $

Tabelle 1. Symmetrieübergang Benzol \rightarrow ortho-Derivat $\rightarrow C_{e}H_{s}X_{o}$ -Radikal.

eigenschaften der Schwingungen des Benzols bei Störung in ortho-Stellung, also beim Übergang $C_6H_6 \rightarrow 0 - C_6H_4 \cdot H_2'$, sind in den ersten drei Spalten der Tabelle 1 zusammengestellt; rund geklammerte Frequenzen stammen von Adsorptions-Messungen, eckig geklammerte sind an sich unbeobachtbar und nur indirekt und daher nur unsicher bestimmbar (vgl. Mitteilung 131²; dazu Anmerkung⁷). Wählt man bei den meta-Derivaten C6H4X2 für die zweite zur Molekülebene senkrechte Symmetrieebene die Lage σ_x (C_{2v}), dann ist deren Lage in den ortho-Derivaten $C_6H_4X_2$ durch $\sigma_y(C_{2v}')$ bestimmt. Demzufolge unterscheidet sich in beiden Fällen der Übergang $C_6H_6 \rightarrow C_6H_4H_2'$ dadurch, daß beim m-Derivat die Klasse B_{1u} nach A_1 und B_{2u} nach B_1 übergeht, beim o-Derivat aber B_{2u} nach A_1 und B_{1u} nach B_1 ; analog sind B_{1g} und B_{2a} miteinander zu vertauschen. — In der 4. Spalte von Tabelle 1 ist angegeben, wie bei Substitution zweier H-Atome durch X die Zahl der Kettenschwingungen in den einzelnen Klassen der Punktgruppe C'_{2v} auf Kosten der CH-Schwingungen zunimmt und welche CH-Frequenzen dabei nicht unmittelbar beeinflußt werden. — In der 5. Spalte ist die Frequenzverteilung für das Radikal $C_6H_4 \cdot X$ angeführt, das nur mehr die Molekülebene als Symmetrieelement und nur mehr drei auf die Anwesenheit der Substituenten X zurückführbare Kettenschwingungen besitzt.

B. Der beobachtete spektrale Übergang zum Radikal $o-C_6H_4$.

In Abb. 1 sind zwischen die symmetrisch substituierten Orthoderivate $C_6H_4 \cdot X_2$ mit X = OH, CH_3 , Cl, Br unsymmetrisch substituierte eingeschoben, um zu deren in den Abb. 2 und 3 durchgeführten Analyse zusätzliche Anhaltspunkte zu gewinnen; es ist zu beachten, daß bei ihnen die Symmetrie des Moleküls von C'_{2v} auf C_s erniedrigt werden sollte. — Als Radikalspektrum dient in Abb. 1 jenes des "ortho-gestörten" Benzols (Symmetrie C'_{2v}) unter Fortlassung der infolge der Substitution in CX-Schwingungen verwandelten CH-Schwingungen, nämlich (nach Tabelle 1) von γ_5 , γ_6 , δ_5 , δ_6 . — Im einzelnen ist zu diesem Übergang und der durch ihn gegebenen Deutung der Linien auf folgende Besonderheiten bzw. meist noch unverstandene Schwierigkeiten zu verweisen:

1. Die senkrecht zur Molekülebene erfolgenden Γ -Schwingungen der Kette. Es sind ihrer fünf, von denen zwei $\Gamma(X)$ -Schwingungen (zu B₂ und A₂ gehörig) mit wachsendem m(X) und abnehmendem f(X) gegen Null gehen, die drei anderen in die Radikalschwingungen $\Gamma_{1,2}$ und Γ_3

⁷ Bei dieser Gelegenheit sei ein dort unterlaufener Fehler berichtigt: in Abb. 1 auf S. 77 müssen in der ersten Zeile die zu γ_2 bzw. γ_3 gehörigen Schwingungsbilder einschließlich der Beschriftung 10b bzw. 10a miteinander vertauscht werden, damit Übereinstimmung herrscht mit den für γ_2 bzw. γ_3 in Mono- und Meta-Benzol angesetzten Symmetrieklassen A₂ bzw. B₂.

E. Herz:

münden müssen. Letztere sind im Raman-Effekt, wenn überhaupt, nur andeutungsweise beobachtbar, was den an anderen Derivaten gewonnenen Erfahrungen entspricht. Zu ersteren zählt zweifellos der mit *a* bezeichnete⁸ Linienzug sowie jener, der bei 300 cm⁻¹ in Brenzkatechin beginnt und bei 200 cm⁻¹ in Dibrombenzol endet; daß der letztere zu einer Senkrechtschwingung gehört, folgt aus dem spektralen Übergang in Abb. 3. Eine sichere Entscheidung, welcher von beiden zur Klasse B₂ bzw. A₂ gehört,

Abb. 1. Durchführung des spektralen Überganges ortho- $C_6H_4H'_2 \longrightarrow C_6H_4$; für mit * bezeichnete Substanzen liegen Polarisationsmessungen vor.

läßt sich ohne Absorptionsmessung kaum treffen; im Raman-Spektrum sind beide — auch bei unsymmetrischer Substitution — depolarisiert.

2. Die ebenen ω -Schwingungen der Kette. Von den insgesamt 13 ebenen Kettenschwingungen verschwinden beim Übergang zum Radikal C_6H_4 vier, zwei polarisierte A_1 - und zwei depolarisierte B_1 -Schwingungen. Sie sind, wenn einmal die Γ -Schwingungen zugeordnet sind, in Abb. 1 leicht auszusondern, da sie tiefer liegen müssen als der mit d bezeichnete Linienzug, der in die tiefste ω -Schwingung des Radikals einmündet; bei der zu ihnen gehörigen Linienfolge c'' (Klasse B_1) stellt man Verschwinden der Depolarisation bei asymmetrischer Substitution dann fest, wenn die Sub-

⁸ Buchstabenbezeichnung a, c, d, e nach K. W. F. Kohlrausch, Physik. Z. 37, 58 (1936).

stituentengewichte hinreichend verschieden sind (z. B. $CH_3...Cl$ oder Cl...Br). Bei der Linienfolge c' (Klasse A_1) tritt in Dichlor- und Chlor-Brom-Benzol Linienverdopplung ein; vermutlich handelt es sich um eine Resonanzerscheinung ($2 \cdot 237 = 474$ und $\frac{1}{2}$ [468 + 485] = 476 in Dichlorbenzol; ähnlich im zweiten Falle).

Was die in die ebenen Kettenschwingungen des Radikals, also in ω_1 , ω_2 , ω_3 , ω_4 , ω_5 , ω_6 , ω_7 , ω_8 , ω_9 übergehenden Derivatfrequenzen anbelangt, so ist der Linienzug d (Klasse A₁) als ω_1 , der Linienzug um 1040 (Klasse A₁) als ω_4 und jener um 1600 als $\omega_{7,8}$ zweifelsfrei zu deuten. Bemerkenswert dabei ist einerseits die sich bei ω_4 (übrigens auch bei c') in Brenzkatechin und o-Kresol einstellende Frequenzunregelmäßigkeit; vielleicht darf diese Abweichung — zu niedere Werte entsprechend einer Lockerung der Ringbindungen — mit dem Mesomeriebestreben dieser Oxyderivate in Zusammenhang gebracht werden. Anderseits sei daran erinnert, daß eine plausible Erklärung für den Umstand, daß für $\omega_{7,8}$ manchmal eine Doppel-, manchmal nur eine Einfachlinie gefunden wird, bisher noch aussteht.

Wesentliche Schwierigkeiten stellen sich ein bei den restlichen ebenen Kettenschwingungen: Erstens fehlt der bei symmetrischer Substitution depolarisiert zu erwartende, nach ω_2 übergehende Linienzug; bzw. es treten Linien, die als ω_2 gedeutet werden können, bei unsymmetrischer Substitution zwar auf, aber anscheinend nur dann, wenn (vgl. dazu Abb. 2 und 3) starke Verschiedenheit der Substituenten vorhanden ist. Zweitens ist die Zuordnung zu ω_5 und ω_6 wie bei allen anderen bisher bearbeiteten Benzolderivaten recht unsicher, da die zugehörigen Schwingungen aus unbekannten Gründen offenbar nur sehr wenig Raman-aktiv (in Benzol selbst inaktiv) sind. Drittens herrscht auch bei den ortho-Derivaten völlige Unklarheit bezüglich $\omega_{\mathbf{g}}$. Und viertens stellt sich hier sogar ein positiver Widerspruch mit der Erwartung ein: Der nach ω_3 zielende Linienzug e sollte bei symmetrischer Substitution depolarisiert sein, während er stets hochpolarisiert ($\rho \sim 0.18$) gemessen wird. Eine Aufklärung dieser offenkundigen Abweichung ist bisher nicht gelungen, sie ist so gewichtig, daß man auf einen Fehler in der Deutung schließen möchte, doch konnte kein gangbarer Ausweg gefunden werden.

3. Die zur Molekülebene senkrechten γ (CH)-Schwingungen: Nach Tabelle 1 sind die γ -Schwingungen der vier CH-Bindungen in den Frequenzbereichen um 690 (γ_4 , Klasse B₂), 780 (γ_1 , A₂), 850 ($\gamma_2 \simeq \gamma_3$, B₂, A₂) zu erwarten. In der Tat treten in den Abb. 1, 2, 3 schwache und einigermaßen lagenkonstante Frequenzen in diesen Gebieten auf, die als γ_1 , γ_2 , γ_3 , γ_4 gedeutet werden können.

4. Die ebenen δ (CH)-Deformationsschwingungen sollten sich nach Tabelle 1 bei etwa 1176 ($\delta_3 \simeq \delta_4 A_1$, B₁), 1320 (δ_2 , A₁), 1400 (δ_1 , B₁) einstellen. Eine lagenkonstante, meist depolarisierte Linie tritt bei 1155 auf,

die zwanglos entweder als nicht aufgespaltenes δ_3 , $_4$ oder als δ_4 gedeutet werden kann; im letzteren Fall kann vielleicht, ebenso wie in den meta-Derivaten (Mitteilung 141⁶), die häufig um 1100 cm⁻¹ beobachtete schwache Linie dem δ_3 zugeordnet werden. Als δ (CH)-Frequenz ist ferner offenbar die gleichfalls lagenkonstante Linie um 1270 cm⁻¹ auszulegen; doch wird sie fast stets depolarisiert gemessen, während $\delta_2 \sim 1320$ polarisiert zu erwarten ist. Nun ist aber daran zu erinnern, daß die Eigenschaften dieser in Benzol unbeobachtbaren Linien δ_2 und δ_1 bezüglich Frequenzhöhe und Polarisationszustand nur indirekt erschlossen werden konnten (Mitteilung 131²). Es ist ebensogut möglich, daß umgekehrt δ_2 (A₁) zu 1400 und δ_1 (B₁) zu 1320 bzw. im ortho-Derivat zu 1270 cm⁻¹ zuzuordnen ist. In diesem Fall stimmt der zu erwartende Polarisationszustand nicht nur im ortho-Derivat mit der Beobachtung überein, sondern auch im para-Derivat, wo dann δ_1 unbeobachtbar, $\delta_2 \sim 1400$ beobachtbar ist und auch in der Tat an dieser Stelle gefunden wurde. Im meta- und mono-Derivat sind δ_1 , sowohl als δ_2 depolarisiert zu erwarten; eine ähnliche Unterscheidung zwischen ihnen ist daher in diesen Fällen nicht möglich. — In den Abbildungen und Tabellen dieser und der vorhergehenden Arbeiten sind somit δ_1 und δ_2 bezüglich ihrer Frequenzlage in Benzol zu vertauschen. Für die nun zu δ_2 (A₁) ~ 1400 zu erwartende Linie werden in den Spektren der ortho-Benzole nur schwache Andeutungen um 1370 gefunden.

5. Die überzähligen Frequenzen der ortho-Derivate: Abgesehen von vereinzelt auftretenden schwachen Linien, die wohl ihre Deutung als zu Kombinationstönen oder vielleicht zu Verunreinigungen gehörig finden werden, sind als noch nicht zugeordnete Linien hauptsächlich jene im Gebiet von 950 bis 1100 zu erwähnen; zum Teil scheinen sie den CH_3 -bzw. OCH_3 -Gruppen zuzuschreiben zu sein, falls diese als Substituenten vorhanden sind. Aber auch wenn das nicht der Fall ist (z. B. in $o-C_6H_4Cl_2$), werden in diesem Gebiet häufig Frequenzen beobachtet, deren Deutung noch ausständig ist.

C. Der beobachtete spektrale Übergang zum Radikal ortho- $C_6H_4 \cdot CH_3$ bzw. $C_6H_4 \cdot Cl$.

In Abb. 2 ist der spektrale Übergang

 $C_6H_4 \cdot H_2' \rightarrow X \cdot C_6H_4 \cdot CH_3 \rightarrow C_6H_4 \cdot CH_3$ -Radikal

ausgeführt. Als Radikalspektrum wurde jenes von Toluol unter Fortlassung der im Radikal nicht mehr auftretenden CH-Frequenzen γ_5 , γ_6 , δ_5 , δ_6 verwendet; auch die Polarisationsverhältnisse hätten genau genommen dem "Radikal" insofern angepaßt werden müssen, als in diesem (Punktgruppe C_s) nur polarisierte ebene (ω , δ) und depolarisierte nichtebene (Γ , γ)-Schwingungen auftreten, die Auswahlregelunterschiede zwischen den Klassen A_1 und B_1 bzw. A_2 und B_2 der Punktgruppe C_{2v} hier demnach verschwinden sollten. Bezüglich der Deutung des Radikalspektrums vgl. Mitteilung 131².

Die Abbildung spricht für sich und es sind gegenüber der im Vorangehenden zu Abb. 1 abgeführten Diskussion nur einige ergänzende Bemerkungen am Platz: Es gehen jetzt natürlich nur mehr drei CX-Frequenzen im Radikal nach Null, drei andere münden in Γ (CH₃) = 210, Δ (CH₃) = 342, ω (CH₃) = 520 des Radikals. Die Linien 1378 und 1440,

Abb. 2. Die Ramanspektren der ortho-substituierten Toluole $X \cdot C_6H_4 \cdot CH_3$ und der spektrale Übergang zum Radikal — $C_6H_4 \cdot CH_3$.

vielleicht auch 980 sind der CH_3 -Gruppe in $C_6H_4 \cdot CH_3$ zuzuordnen. ω_2 tritt wieder nur bei starker Verschiedenheit zwischen X und CH_3 auf; die formale Härte, daß in Abb. 2 und 3 der Linienzug d zwecks Übereinstimmung mit der Zuordnung in Abb. 1 als ω_1 bezeichnet werden muß, obwohl er in ω_2 des Radikals $C_6H_4 \cdot X$ mündet (ähnliche Schwierigkeit beim Linienzug ω_2 , der nach ω_1 des Radikals zielt), hängt wieder mit der Nichtvergleichbarkeit der Symmetrieverhältnisse in C_{2v}' und C_{2v} zusammen. ω_3 wird stets hochpolarisiert, $\omega_{7,8}$ stets doppelt, in Toluidin sogar dreifach gefunden, wobei aber eine δ -Schwingung der NH₂-Gruppe beteiligt sein könnte. Frequenzunregelmäßigkeiten stellen sich wieder ein für X = NH₂ und OH, aber auch — wie so häufig — für X = F!

Um einen Überblick über den Polarisationszustand gleichartiger Schwingungsformen in verschiedenen Derivaten zu gewinnen, ist in

E. Herz:

Tabelle 2 — ähnlich wie für die metasubstituierten Toluole in Mitteilung 140⁵ — eine Zusammenstellung der betreffenden Werte gegeben. Angeführt sind: Die Frequenz der Linie und ihre subjektiv geschätzte Intensität, die gemessene Intensität $J = i(\sigma) + i(\pi)$ und der Polari-

	1	→ 0	2 -	-→Γ(X)	3	→ 0	4	> 0
NH ₂ OH OCH ₃ F CH ₃ Cl Br	186(6b) 190(8b) 175(5b) 186(12) 178(8b) 166(10b) 155(8b)	$\begin{array}{c} 44 & 0,70 \\ 68 & 0,93 \\ 54 & 0,70 \\ 52 & 0,85 \\ 38 & 0,81 \\ 47 & 0,92 \\ \hline \\ - & dp \\ 85 & 0,87 \end{array}$	$\begin{array}{c} 267 (3b) \\ 274 (8b) \\ 286 (2b) \\ 272 (10) \\ 255 (5b) \\ 247 (6) \\ 238 (5) \\ 225 (2) \end{array}$	28 dp 63 0,89 22 0,65 44 0,81 25 0,64 28 0,94 45 0,92	318(1/2sb) 314(1) 329(2) verdeckt verdeckt 215(1b) 104(2)	_ p? 15 0,60 ?	$\begin{array}{c} 437(0)\\ 440(2)\\ 436(1)\\ 427(2)\\ 433(0)\\ 365(3)\\ 297(12)\\ 950(2)\end{array}$	6 dp 20 0,52 81 0,36
	1 1 5(5)	→ Δ (X)	6	$\rightarrow \omega(\mathbf{X})$	$7 \rightarrow \gamma_4$	- up:	$\rightarrow \omega_2$	$9 \rightarrow \gamma_1$
NH ₂ OH OCH ₃ F CH ₃ Cl Br J	$515(8) \\ 526(8) \\ 496(7b) \\ 526(7) \\ 505(5) \\ 447(6) \\ 411(4) \\ 406(1)$	39 0,74 47 0,90 37 0,48 24 0,96 21 0,73 31 0,30 19 0,62 26 dp?	585 (9) 584 (10) 586 (4) 576 (10) 582 (10) 552 (12) 544 (12) 535 (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	711 (¹ / ₂) 710 (1) 721 (1) 703 (0) 702 (0) 	745 (20) 748 (20) 745 (12) 746 (20) 733 (18) 678 (8) 656 (10) 643 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	verd. verd. verd. verd. 745(1) 748(1)
	10	$\rightarrow \omega_1$	11	$\rightarrow \gamma_{2,3}$	1	.2	13	
NH ₂ OH OCH ₃ F CH ₃ Cl Br J		— p 45 0,10 47 0,18	$\begin{array}{c} 847(2b)\\ 847(2)\\ 842(1)\\ 849(1)\\ 862(^{1}\!\!/_{2})\\ 856(00)\\ 853(0)\\ 855(^{1}\!\!/_{2})\end{array}$	16 0,68 14 dp dp? dp?	982 (2) 986 (1) 990 (2) 985 (4) 985 (3) 989 (1) 997 (0) 990 (1)	20 0,28 	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \begin{array}{c} 70 & 0,16 \\ 110 & 0,12 \\ 54 & 0,12 \\ 34 & 0,19 \\ 35 & 0,10 \\ 40 & 0,12 \\ 68 & 0,10 \\ 76 & 0,15 \end{array}$
	14	$15 \longrightarrow \delta_2$	16	$\rightarrow \delta_4$	17	$\rightarrow \omega_2$	18	$\rightarrow \delta_1$
NH ₂ OH OCH ₃ F CH ₃ Cl Br J	$\begin{vmatrix} 1085 (1/2) \\ 1082 (1) \\ \\ 1072 (2) \\ \\ 1056 (1/4) \\ 1031 (5) \\ 1014 (6) \end{vmatrix}$	1102 (0) 1108 (0) 1118 (00) 1110 (3) 1121 (¹ / ₂) 1129 (¹ / ₂) 1135 (00)	$1156(4d) \\1154(3) \\1158(4) \\1155(6b) \\1157(2) \\1158(3) \\1158(4) \\1159(3)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1271 (6sb 1254 (6so 1240 (6sb 1233 (15) 1222 (10) 1208 (7) 1208 (6) 1206 (5)) 44 0,20) 61 0,13) 41 0,11 37 0,18 34 0,15 21 0,16 39 0,14 50 0,21	$ \begin{vmatrix} 1301 (^{1}/_{2}) \\ 1290 (0) \\ 1285 (1) \\ 1278 (3) \\ 1289 (^{1}/_{3}) \\ 1279 (^{1}/_{2}) \\ 1276 (2) \\ 1275 (1) \end{vmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabelle 2. $\varDelta \nu \mathbf{J} = i (\sigma) + i (\pi), \ \varrho = i (\sigma)/i(\pi)$ für ortho $-\mathbf{X} \cdot \mathbf{C}_{6}\mathbf{H}_{4} \cdot \mathbf{C}\mathbf{H}_{3}$.

	19, ð ((CH) ₃	$20 \rightarrow \omega_6$	21,δ(CH3)	22	→ ²⁰ 7, 8
NH ₂ OH OCH ₃ F CH ₃ Cl Br J	1376 (4) 1377 (6) 1376 (3) 1371 (6) 1382 (6) 1381 (3) 1380 (4) 1377 (2)	21 0,57 28 0,70 12 0,50 16 0,51 21 0,52 13 0,50 19 0,40 23 0,63	$\begin{array}{c}\\ 1406 (1)\\ 1410 \left(\frac{1}{2} \right)\\ 1427 (00)\\ 1426 (00)\\ 1413 (0) \end{array}$	$1435(1)\\1440(2b)\\1446(2sb)\\1440(2)\\1446(3sb)\\1441(0)\\1456(0b)\\1451(0)$	15 0,72 22 dp 16 0,51 11 0,86 14 0,80 	$\begin{array}{cccc} 1582(5) & 160\\ 161\\ 1590(5) &+ 161\\ 1588(2) &+ 160\\ 1583(2) &+ 161\\ 1581(4b) &+ 160\\ 1572(3) &+ 159\\ 1567(5) &+ 159\\ 1560(3) &+ 158\end{array}$	$\begin{array}{c} 22(8) \\ 8(5) \\ 22(6) \\ 50 \\ 0,93 \\ 01(7) \\ 44 \\ 0,59 \\ 9(10) \\ 20 \\ 0,86 \\ 5(6) \\ 23 \\ 0,84 \\ 04(3^{1}/_{2}) \\ 18 \\ 0,79 \\ 06(5) \\ 21 \\ 0,82 \\ 6(3) \\ 27 \\ 0,83 \end{array}$
	Rad. Rad.		400 500 Balance Are Ar France Are Ar France Are Ar France Are Ar Are Ar France Are Ar Are Ar A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Abb. 3. Die Ramanspektren der ortho-substituierten Chlorbenzole $X \cdot C_6H_4 \cdot Cl$ und der spektrale Übergang zum Radikal — $C_6H_4 \cdot Cl$.

sationszustand $\rho = i (\sigma)/i (\pi)$; jedes Kästchen ist mit einer durchlaufenden Nummer und mit der Angabe versehen, in welche der Toluolschwingungen die betreffende Linienfolge laut Zuordnung von Abb. 2 übergeht. Überzählige Linien und allzu unvollständige Linienfolgen wurden weggelassen. Die Angaben für Methoxytoluol mit dem gewinkelten Substituenten OCH₃ passen nicht ganz in die Toluolreihe. — Bei jenen Schwingungen, bei denen wie in den Kästchen Nr. 8, 11, 13, 16, 17, 18, 19, 21, 22 die Unsymmetrie der Substituenten wenig Einfluß auf den ρ -Wert hat, weil es sich entweder um CH- oder um polarisierte Kettenschwingungen handelt, findet man in Tabelle 2 eine oft überraschende Gleichartigkeit des Polarisationszustandes. Bei den für C_{2v}' als depolarisiert zu erwartenden X-empfindlichen ebenen Schwingungen ist zu berücksichtigen, daß für die mit CH_3 ähnlichen Substituenten X = NH_2 , OH, F, noch die Quasisymmetrie C_{2v}' herrschen wird, die erst verloren geht, wenn X = Cl, Br, J wird; bei ihnen — vgl. Kästchen 4 und 5 — ist ϱ deutlich inkonstant.

In Abb. 3 wird der spektrale Übergang von Benzol über die substituierten Chlorbenzole $X \cdot C_6H_4 \cdot Cl$ zum Chlorbenzolradikal $C_6H_4 \cdot Cl$ in analoger Weise wie in Abb. 2 für die X-Toluole durchgeführt. Auch hier sind die an Hand von Abb. 1 besprochenen Besonderheiten (teilweises Fehlen von ω_2 , Frequenzunregelmäßigkeiten bei den Linien c", c' und ω_4 , hohe Polarisation von ω_3 usw.) wieder zu finden. Deutlicher als in den beiden anderen Abbildungen ist das Vorhandensein eines Frequenzganges bei der (nach der Vertauschung von δ_2 mit δ_1) zu δ_1 (CH) zugeordneten Linie um 1270 zu erkennen. Aber auch hier, ebenso wie in Abb. 1 und Abb. 2 oder überhaupt bei den ortho-Spektren läßt sich die überwiegende Mehrzahl aller auftretenden Linien zwanglos in den spektralen Übergang einordnen, wodurch eine schon sehr weitgehende Deutung der ortho-Spektren erreicht ist.

				With at		Einzelmessungen			
Nr.				MITTEL	werte	P. 711,	t = 74	P. 712,	t = 97
	Δν	i_{π}	i_{σ}	Q	J	Q	J	Q	J
1	186 (6 b)	4d	$3^{1/2} d$	0.70	44	0.70	41	0.70	48
2	267(3sb)	2d	$1^{1/2}d$	dp	28	(1,62)	32	(1.02)	25
3	318(1/,sb)	$^{3/} d$	$\frac{1}{2}d$					<u> </u>	
5	437 (0)	0	0			'	<u> </u>		
6	515(8)	4d	3 d	0,74	39	0,82	43	0,65	36
7	585 (9)	5	3	0,53	39	0,52	39	0,54	39
9	745 (20)	9	2	0,15	145	0,18	139	0,12	151
10	847(2b)	1 '	1/2	0,68	16	0,77	16	0,60	16
12	982 (2)	4	1	0,28	20	0,39	22	0,16	18
13	1035 (12 b)	7	2	0,16	70	0,19	68	0,12	73
14	1085 (1/2)	1/2	$\frac{1}{2}$			<u> </u>		í	
16	1156(4d)	5d	$4^{1/2}d$	0,70	28	0,76	29	0,65	27
17	1200 (7)	$5^{1/2}$	2	0,25	30	0,28	30	0,22	29
18	1271~(6~sb)	$6^{1/2}$	2	0,20	44	0,23	45	0,18	43
19	$1301 (^{1}/_{2})$	3	2	p?		p?		p?	
20	1376 (4)	$4^{1}/_{2}$	2	0,57	21	0,57	19	0,78	22
21	1435(1)	2	$\frac{1}{2}$	0,72	15	0,73	16	0,70	15
25	1582(5)	5	1	p	- (p.		p	
26	1602 (8)	17	6	0.87	55	0.95	56	0.80	54
27	1618~(5~sd)	J		0,01		0,00	00	0,00	01
		1			1	1	l i	1	1

Tabelle 3. o-Toluidin.

Der Deutschen Forschungsgemeinschaft habe ich für die weitgehende Unterstützung meiner Arbeit den Dank auszusprechen.

Anhang.

Vor der Spektroskopierung wurden die bearbeiteten Ortho-Derivate in der üblichen Weise gereinigt; für diese Vorbehandlung habe ich Frl. Dipl. chem. R. Högler und Frl. Dr. H. Wittek zu danken.

1. o-Toluidin $CH_3 \cdot C_6H_4 \cdot NH_2$ (Tabelle 3). Aufnahme mit großer Dispersion: A 230, m. F., $t = 90^{1/2}$; n = 36.

$$\begin{split} & \Delta v = 186 \ (6 \ sb) \ (\pm \ e); \ 267 \ (3 \ sb) \ (\pm \ e); \ 318 \ (^{1}_{2} \ sb) \ (e); \ 423 \ (0) \ (e); \ 437 \\ & (0) \ (e); \ 515 \ (8) \ (e, \ f); \ 585 \ (9) \ (e); \ 711 \ (^{1}_{2}) \ (e); \ 745 \ (20) \ (e, \ f, \ g); \ 847 \ (2b) \ (e); \\ & 882 \ (0) \ (e); \ 982 \ (2) \ (e); \ 1035 \ (12 \ bd) \ (e, \ f, \ g); \ 1085 \ (^{1}_{2}) \ (e); \ 1102 \ (0 \ ?) \ (e); \ 1156 \\ & (4 \ d) \ (e); \ 1200 \ (7) \ (e, \ f); \ 1271 \ (6 \ sb) \ (e); \ 1301 \ (^{1}_{2}) \ (e); \ 1376 \ (4) \ (e, \ f); \ 1435 \\ & (1) \ (e); \ 1466 \ (^{1}_{2}) \ (e); \ 1488 \ (^{1}_{2}) \ (e); \ 1501 \ (^{1}_{2}) \ (e); \ 1582 \ (5) \ (e); \ 1602 \ (8) \ (e); \\ & 1618 \ (5 \ sd) \ (e). \end{split}$$

Gegenüber den bisherigen Messungen (vgl. insbesondere Kohlrausch-Pongratz⁹) ist die vorliegende Aufnahme wesentlich stärker exponiert und daher reichhaltiger an Linien. Die Dreifachheit der Linie um 1600 ist zweifelsfrei.

2. o-Kresol. $CH_3 \cdot C_6H_4 \cdot OH$ (Tabelle 4). Aufnahmen mit großer Dispersion: A 231, m. F. I, t = 82; A 235, m. F. C., t = 62; n = 75.

 $\Delta v = 190 \ (8 \ sbd) \ (\pm \ e); \ 274 \ (8 \ sb) \ (k, \ i, \ \pm \ e); \ 314 \ (1) \ (k, \ e); \ 440 \ (2) \ (k, \ \pm \ e); \ 526 \ (8) \ (k, \ i, \ e, \ f); \ 537 \ (^8/_2) \ (e); \ 584 \ (10) \ (k, \ i, \ \pm \ e); \ 710 \ (1) \ (k, \ e); \ 748 \ (20) \ (k, \ i, \ \pm \ e, \ f); \ 910 \ (1) \ (k, \ e); \ 1040 \ (2 \ f) \ (k, \ e); \ 710 \ (1) \ (k); \ 710 \ (k) \ (k)$

				Tritten 1		Einzelmessungen			
Nr.				MILLER	werte	P. 716,	t = 83	P. 717,	t = 103
	Δν	i_{π}	iσ	ę	J	ę	J	ę	J
1	190 (8 sb)	4d	4d	0,93	68	0,93	71	0,93	66
2	274 (8 sb)	4d	3 d	0,89	63	0,74	62	1,03	65
5	526 (8)	$4^{1/2}$	$4^{1/2}$	0,90	47	0,97	47	0,85	46
7	584 (10)	6	5	0,58	62	0,54	60	0,62	63
9	748 (20)	14	5	0,11	204	0,11	204	р	
10	847 (2)	$\frac{1}{2}$	0	dp	14	(1,23)	14	(1,35)	15
13	1044 (15)	10	$2^{1}/_{2}$	0,12	110	0,11	111	0,13	108
16	1154 (3)	5	5	0,79	36	0,74	33	0,84	39
17	1254~(6sb)	8	$1^{1}/_{2}$	0,13	61	0,17	62	0,08	59
19	1377 (6)	5	$2^{1/2}$	0,70	28	0,71	31	0,69	31
20	1440 (2 b)	4d	4d	dp	22	(1,02)	22	(1,15)	22
$\begin{array}{c} 23 \\ 24 \end{array}$	$1590 (5 d) \\ 1612 (6 d)$	5 d 5 d	5d 5d	}0,93	50	0,87	51	1,00	49

Tabelle 4. o-Kresol.

⁹ K. W. F. Kohlrausch und A. Pongratz, S.-B. Akad. Wiss. Wien, Abt. IIb 142, 637 (1933); Mh. Chem. 63, 427 (1933). Gute Übereinstimmung mit den bisherigen Beobachtungen (vgl. Kohlrausch-Pongratz⁹); neu ist die Aufspaltung der Linie 3057 (7 b) in 3049 (8 sb) + 3073 (6 sb) und das Auftreten der schwachen Linien 537 ($^{3}/_{2}$), 710 (1), 1040 (2 ?), 1082 (1), 1290 (0), 1465 (0), 1493 (0 ?), 2951 (1), 2989 (1).

3. o-Fluortoluol. $F \cdot C_6H_4 \cdot CH_3$ (Tabelle 5). Aufnahmen mit großer Dispersion: A 228, m. F. I, t = 72; A 229 m. F. C., t = 62; n = 76.

 $\Delta \nu = 186 \ (12 \ d) \ (\pm \ e); \ 272 \ (10) \ (k, \ i, \ \pm \ e); \ 427 \ (2) \ (k, \ e); \ 443 \ (2) \ (k, \ e); \ 526 \ (7) \ (k, \ i, \ e, \ f); \ 535 \ (1) \ (k, \ e); \ 576 \ (10) \ (k, \ i, \ \pm \ e); \ 703 \ (0\ ?) \ (k, \ e); \ 746 \ (20) \ (k, \ i, \ e, \ f); \ 535 \ (1) \ (k, \ e); \ 576 \ (10) \ (k, \ i, \ \pm \ e); \ 703 \ (0\ ?) \ (k, \ e); \ 746 \ (20) \ (k, \ i, \ e, \ f); \ 526 \ (7) \ (k, \ e); \ 746 \ (20) \ (k, \ e); \ 1036 \ (15) \ (15$

Neu gefunden wurden die schwachen Linien 443 (2), 535 (1), 703 (0?). 890 $\binom{1}{2}$, 1191 $\binom{1}{2}$, 1406 (1), 1462 $\binom{1}{2}$; im übrigen gute Übereinstimmung mit den Frequenzbeobachtungen von Kohlrausch-Pongratz⁹.

4. o-Xylol. $CH_3 \cdot C_6H_4 \cdot CH_3$ (Tabelle 6). Aufnahmen mit großer Dispersion: A 190, m. F., t = 66, Ugd. s., Sp. st.; A 191, o. F., t = 36, Ugd. m., Sp. st.; n = 83.

 $\Delta v = 178 \ (6 \ bd) \ (\pm \ e); \ 255 \ (5 \ bd) \ (\pm \ e); \ 433 \ (0) \ (k, \ i, \ e); \ 505 \ (5 \ d) \ (k, \ i, \ \pm \ e); \ 582 \ (10) \ (k, \ i, \ \pm \ e, \ f); \ 702 \ (0 \ ?) \ (e); \ 733 \ (18 \ s) \ (k, \ i, \ \pm \ e, \ f, \ g); \ 862 \ (^1/_2) \ (k, \ e); \ 985 \ (3) \ (k, \ i, \ e, \ f); \ 1052 \ (15 \ s) \ (k, \ i, \ e, \ f, \ g); \ 1121 \ (^1/_2) \ (k, \ e); \ 1157 \ (2 \ d) \ (k, \ e); \ 1282 \ (10) \ (k, \ e); \ 1289 \ (^1/_2) \ (k, \ e); \ 1372 \ (^1/_2) \ (k, \ e); \ 1382 \ (6) \ (k, \ e, \ f); \ 1410 \ (^1/_2) \ (k, \ e); \ 1446 \ (3 \ sb) \ (k, \ e); \ 1492 \ (^1/_2) \ (e); \ 1581 \ (4 \ b) \ (k, \ i, \ e); \ 1605 \ (6) \ (k, \ i, \ e); \ 2577 \ (1) \ (k); \ 2732 \ (1) \ (k); \ 2855 \ (3) \ (k); \ 2870 \ (2 \ d) \ (k); \ 2883 \ (3 \ d) \ (k); \ 2916 \ (6 \ bd) \ (p, \ q, \ k, \ i, \ e); \ 2940 \ (2 \ bd) \ (p, \ q, \ k); \ 2970 \ (1 \ ?) \ (q, \ k); \ 3020 \ (3) \ (k); \ 3043 \ (8) \ (q, \ p, \ o, \ k, \ i, \ e); \ 3077 \ (3) \ (p, \ k, \ i).$

Neu sind die Linien 433 (0), 702 (0??), 1372 $\binom{1}{2}$, 1410 $\binom{1}{2}$, 1492 $\binom{1}{2}$ -2732 (1), 2870 (2 d), 2940 (2 bd), 2970 (1?), 3020 (3), 3077 (3); die zusätzlichen Linien 227 $\binom{1}{2}$, 534 (00), 997 (2 dopp.?) wurden als zum Meta,

	1			1644.1		Einzelmessungen			
Nr.				MICCEI	werte	P . 709,	t = 98	P. 710, t = 128	
	Δν	i_{π}	i_{σ}	ę	J	Q	J	6	J
1	185(12d)	5	4 ¹ /.	0.85	52	0.88	55	0,82	50
2	272 (10)	5	$4^{1/2}$	dp	44	(1,19)	(43)	0,81	46
5	526 (7)	3	$1^{1/2}$	0,96	24	1,01	23	0,93	26
7	576 (10)	5	$1^{1/2}$	0,53	34	0,51	35	0,55	33
9	746 (20)	8	2	0,12	73	0,13	77	0,11	68
13	986 (4)	$1^{1}/_{2}$	$\frac{1}{2}$	0,50	13	р		0,50	13
14	1036 (15)	7	$\frac{1}{2}$	0,19	34	(0,29)	(42)	0,19	34
17	1155 (6 b)	1	1/2	0,77	14	0,76	12	0,78	14
19	1233 (15)	7	$\frac{1}{2}$	0,18	37	0,13	39	0,23	35
20	1278 (3)	1/2	0			1			
21	1381 (6)	3	1	0,51	16	0,50	14	0,52	16
23	1441 (2)	1	1	0,86	11	0,78	12	0,95	. 11
25	1583 (2)	1	1/2						
26	1619 (10)	5	5	0,86	20	0,86	17	0,85	23

Tabelle 5. o-Fluortoluol.

						1	Einzelm	essungen	
Nr.				Mittei	werte	P. 687,	t = 47	F. 688,	t = 58
	Δν	<i>i</i> _π	io	ę	J	6	J	e	J
1	178 (8 b)	5	4	0,81	38	0,81	40	0,81	37
2	255 (5 b)	4	3	0,64	25	0,71	26	0,57	24
4	505(5d)	4	$3^{1/2}$	0,73	21	0,76	22	0,71	19
5	582 (10)	7	4	0,37	32	0,43	33	0,32	31
7	733 (18)	12	4	0,10	76	0,12	74	0,08	78
8	862(1/2)	1/2	0				<u> </u>		
9	985 (3)	$5^{1/2}$	1/2	P					
10	1052 (15)	10	2	0,10	35	0,14	33	0,07	38
12	$1121 (^{1}/_{2})$	$\frac{1}{2}$	$\frac{1}{2}$		—				
13	1157 (2 d)	$4^{1/2}$	$2^{1/2}$	0,57	14	0,60	15	0,55	14
14	1222 (10)	10	2	0,15	34	0,14	33	0,15	35
15	1289 (1/2)	2	$\frac{1}{2}$	0,67	7	0,65	7	0,70	6
17	1382 (6)	$5^{1/2}$	$4^{1/2}$	0,52	21	0,60	20	0,45	22
19	1446 (3 b)	$4^{1/2}$	$4^{1}/_{2}$	0,80	14	0,88	14	0,74	14
21	1581 (4 <i>b</i>)	$4^{1/2}$	2	p?	16	р		0,86	16
22	1605 (6)	5	$4^{1}/_{2}$	0,84	23	0,97	23	0,72	24
28	2916 (6 b)	3	0	р	·				

Tabelle 6. o-Xylol.

Nr. 13 korr. auf Überdeckg. mit f = 14: 0,74, 12.

							Einzelm	lessungen	
Nr.			-	Miller	werte	P. 689,	t == 47	P. 692, t	= 79 ¹ / ₂
	Δν	i_{π}	iσ	e	J	e	J	e	
1	166 (10 b)	$6^{1/2} b$	$6^{1/2}b$	0,92	47	0,84	53	0,99	40
2	$247 \ (6 \ d)$	$4^{1}/_{2}$	$4^{1/2}$	0,94	28	0,94	21	(0,54?)	28
3	365 (3)	$2^{1}/_{2}$	1	0,52	20	(0,66)	21	(0,39)	19
4	447 (6)	4	$1^{1/2}$	0,30	31	0,32	31	0,29	32
5	552(12s)	7	$1^{1/2}$	0,40	33	0,15	31	0,13	34
6	678(8d)	$6^{1}/_{2}$	1/2	0,22	32	0,30	21	0,13	19
7	805 (6 s)	5	3/4	р		р		р	
8	856 (00)	0	0			·		<u> </u>	
10	1045 (10 d)	12	1/2	0,12	40	0,15	42	0,10	39
12	1129 (1/2)	$\frac{1}{2}$	1/2			—	<u> </u>		
13	1158 (3)	3	$2^{1/2}$	(0,77)	15	0,89	15	(0,65)	14
14	1208 (7)	6	1	0,16	21	0,18	21	0,15	18
15	1279 (1/2)	1 d	1 d	0,59	8	0,60	9	0,58	8
16	1381 (3)	· 4	2	0,50	13	0,59	14	0,42	12
19	1441 (0)	0 d	0 d						
20	$\frac{1572}{1594} \frac{(3 d)}{(3^{1}\!/_{2} b)}$	4 4	$\frac{2}{3^{1/2}}$	}0,79	18	0,90	21	0,68	16

Tabelle 7. o-Chlortoluol.

Nr. 13 korr. auf Überdeckg. d. f-1208.

Derivat, die Linie 830 (00) als zum Para-Derivat gehörig angesehen. Im übrigen gute Übereinstimmung mit den bisherigen Messungen.

5. o-Chlortoluol. $\text{Cl}\cdot\text{C}_6\text{H}_4\cdot\text{CH}_3$ (Tabelle 7). Aufnahmen mit großer Dispersion: A 195, m. F. I, t = 63, Ugd. s., Rsp. st.; A 197, m. F. C., t = 31, Ugd. s., Sp. st.; n = 76.

 $\Delta \nu = 166 \ (10 \ b) \ (k, \pm e); \ 247 \ (6 \ d) \ (k, \pm e, +f); \ 365 \ (3) \ (\pm e); \ 447 \ (6) \ (k, i, \pm e, f); \ 552 \ (12 \ s) \ (k, i, \pm e, f); \ 678 \ (8 \ d) \ (k, i, \pm e, f); \ 745 \ (12) \ (e); \ 805 \ (6 \ s) \ (k, i, \pm e, f, g); \ 856 \ (00 \ ?) \ (e); \ 989 \ (12) \ (e); \ 1017 \ (0) \ (k, e); \ 1045 \ (10 \ d^{\uparrow}) \ (k, i, e, f, g); \ 1056 \ (^{1}_{2}) \ (k, e); \ 1129 \ (^{1}_{2}) \ (k, e); \ 1158 \ (3) \ (k, i, e, f); \ 1208 \ (7) \ (k, i, e); \ 1279 \ (^{1}_{2}) \ (k, e); \ 1129 \ (^{1}_{2}) \ (k, e); \ 1158 \ (3) \ (k, i, e, f); \ 1208 \ (7) \ (k, i, e); \ 1279 \ (^{1}_{2}) \ (k, e); \ 1381 \ (3) \ (k, e); \ 1400 \ (00) \ (k, e); \ 1427 \ (0) \ (e); \ 1441 \ (0) \ (k, e); \ 1572 \ (3 \ d) \ (k, e); \ 1594 \ (3^{1}_{2} \ b) \ (k, e); \ 2623 \ (002) \ (k); \ 2861 \ (00) \ (k); \ 2904 \ (2) \ (k, i); \ 2925 \ (5) \ (k, i); \ 2955 \ (^{1}_{2}) \ (k, i); \ 3020 \ (^{3}_{4}) \ (k, i); \ 3054 \ (6^{1}_{2}) \ (k, i); \ 3064 \ (6 \ b \) \ (k, i).$

Ausgenommen einige schwache Linien bei 1056 (1/2), 1400 (00), 1441 (0), 2623 (00?), 2904 (2), 2955 (1/2) gute Übereinstimmung mit den Frequenzwerten von Kohlrausch-Pongratz.⁹ 3062 (7 b) spaltet auf in 3054 (61/2) + + 3064 (6 b \downarrow).

6. o-Bromtoluol. $Br \cdot C_6H_4 \cdot CH_3$ (Tabelle 8). Aufnahmen mit großer Dispersion: A 118, m. F., t = 49; A 119, o. F., $t = 23^{1}/_{2}$, starker Untergrund durch Gelbfärbung; n = 45.

 $\Delta v = 155 \ (8 \ ssb) \ (\pm \ e); \ 215 \ (1 \ b) \ (\pm \ e); \ 238 \ (5 \ d) \ (\pm \ e); \ 297 \ (12 \ s) \ (\pm \ e, \ g); \ 411 \ (4 \ s) \ (\pm \ e); \ 435 \ (00) \ (e); \ 501 \ (0) \ (e); \ 544 \ (12 \ s) \ (\pm \ e, \ f, \ g); \ 656 \ (10 \ s) \ (\pm \ e, \ f); \ 796 \ (9 \ s) \ (e, \ f, \ g); \ 853 \ (00) \ (e); \ 997 \ (00) \ (e); \ 1031 \ (5) \ (e, \ f);$

				Mittel	lwerte	Einzelmessungen			
Nr.				dopp. G	ew. 606	P. 605,	t = 48	P. 606,	t = 32
	Δν	i _n	i_{σ}	Q	J	ę	J	e	J
1	155 (8 sb)	10	8	dp		·			
3	[238 (5)]	$5^{1}/_{2}$	$4^{1}/_{2}$	0,92	46	0,841	50	0,959	43
4	[297 (12s)]	10	$4^{1}/_{2}$	0,36	81	0,380	88	0,342	78
5	411(4s)	5	$2^{1/2}$	0,62	19	0,395	19	0,733	19
8	544~(12s)	10	4	0,28	62	0,216	65	0,317	59
9	656 (10 <i>s</i>)	10	$1^{1/2}$	0,18	44	0,199	44	0,176	44*
10	796 (9 <i>s</i>)	10	$1^{1}/_{2}$	0,10	45	0,091	40	0,116	47
11	853 (0)	0 d	0 d		<u>·</u>	<u> </u>			·
13	1031 (5)	9	i	0,20	50	0,196	12	р	16
14	1045~(10~s)	16	$3^{1}/_{2}$	0,10	68	0,072	71	0,109	67
17	[1158(4)]	5	4	0,75	18	0,662	18	0,795	18
18	1208 (6)	12	3	0,14	39	0,096	41	0,168	38
19	1276 (2)	$3^{1/2}$	3	0,58	11	0,563	10	0,589	12
20	1380 (4)	$4^{1}/_{2}$	$3^{1}/_{2}$	0,40	19	0,389	16	0,408	21
22	1456 (0)	0d	0 d	0,78	9	0,637	7	0,847	10
23	1567 (5)	$4^{1/2}$	4	0,86	20	0,79	19	0,890	21
24	1596 (5)	$4^{1/2}$	4	0,77	24	0,667	23	0,816	24
26	2925 (1 b)	2		0,23	32	0,253	31	0,225	32
27	3063 (3 <i>b</i>)	6	2	0,44	56	0,429	55	0,453	57

Tabelle 8. o-Bromtoluol.

 $\Delta v \sim 236$ u. 1156 bereits korrigiert auf Überdeckg. mit f = 296 und f = 1204. Pl. 606 mit doppeltem Gewicht.

1045 (10 s) (e, f, g); 1074 (00) (e); 1135 (00) (e); 1158 (4) (e, f); 1208 (6) (e); 1276 (2) (e); 1380 (4) (e, f); 1426 (00) (e); 1456 (0 b) (e); 1567 (5) (e); 1596 (5) (e); 2870 (00) (e); 2925 (1 b) (e); 3063 (1 b) (e).

Gute Übereinstimmung mit den Angaben von Kohlrausch-Pongratz;⁹ neu sind die schwachen Linien 435 (00), 501 (0), 1074 (00), 1135 (00), 1426 (0 b). 7. o-Jodtoluol. J·C₆H₄·CH₈ (Tabelle 9). Aufnahme mit großer Dispersion:

A 246, m. F. I, t = $70^{1/2}$; Substanz gelb, nach Belichtung braun; n = 27. $\Delta \nu = 143$ (5) (± e); 194 (2) (± e); 235 (2) (e, f, g?); 250 (8) (e); 406 (1) (e); 535 (6) (e, f); 643 (5) (e); 748 (1) (e); 795 (5) (e); 855 (¹/₂) (e); 937 (¹/₂) (e); 990 (1) (e); 1014 (3) (e); 1044 (7) (e); 1159 (3) (e); 1206 (5) (e); 1275 (1) (e); 1377 (2) (e); 1413 (0) (e); 1451 (0) (e); 1560 (3) (e); 1586 (3) (e).

Gute Übereinstimmung mit Kohlrausch-Pongratz.⁹

8. o-Chloranilin. $\text{Cl} \cdot \text{C}_6\text{H}_4 \cdot \text{NH}_2$ (Tabelle 10). Aufnahme mit großer Dispersion: A 124, m. F., t = 40, in N₂ eingeschmolzen, Verfärbung; n = 32.

Dispersion: A 124, in: F., t = 40, in \mathbb{N}_2 engeschinolzen, Verlarbung; n = 52. $\Delta v = 171 \ (6 \ sbd) \ (\pm e); \ 261 \ (5 \ d) \ (\pm e, f); \ 332 \ (0) \ (e); \ 372 \ (5) \ (\pm e, f); \ 435 \ (^1_2) \ (e); \ 471 \ (5) \ (\pm e); \ 539 \ (0) \ (e); \ 559 \ (5) \ (e, f); \ 677 \ (7) \ (e, f); \ 708 \ (^1_2) \ (e); \ 747 \ (1 \ b) \ (e); \ 814 \ (0) \ (e); \ 836 \ (6) \ (e, f); \ 878 \ (0) \ (e); \ 996 \ (1) \ (e); \ 1023 \ (10) \ (e, f, g); \ 1046 \ (2) \ (e); \ 1088 \ (2 \ b) \ (e); \ 1140 \ (2) \ (e); \ 1156 \ (3) \ (e); \ 1214 \ (007) \ (e); \ 1262 \ (3 \ d^{\uparrow}) \ (e); \ 1305 \ (4 \ bd) \ (e); \ 1352 \ (007) \ (e); \ 1381 \ (00) \ (e); \ 1422 \ (0) \ (e); \ 1349 \ (1) \ (e); \ 1485 \ (2 \ s) \ (e); \ 1589 \ (5 \ d) \ (e); \ 1612 \ (5 \ d) \ (e); \ 3065 \ (1 \ b) \ (e); \ 3367 \ (00) \ (e).$

Gute Übereinstimmung mit den Werten von Kohlrausch-Pongratz¹⁰;

				Mittol	worto		Einzelme	messungen		
Nr.				MILOOGI	werte	P. 727,	t = 73	P. 728,	t = 79	
	Δν	i _π	i_{σ}	Q	J	ę	J	ę	J	
1	143 (5)	6 d	6 d	0,87	85	0,83	83	0,92	87	
2	194(2)	3	3	dp?	—			,		
4	250 (8)	8	$5^{1/2}$	0,39	158	0,37	155	0,42	161	
5	406(1)	1	1/2	dp	26	0,93	24	(1, 37)	28	
6	504 (1)	1	1/2	dp	20	0,82	17	(1,96)	23	
7	535(6)	6	$2^{1/2}$	0,34	67	0,32	65	0,37	69	
8	643 (5)	6	$\frac{1}{2}$	0,26	55	0,26	55	0,27	54	
9	748(1)	3	3	0,81	18	0,81	18	(0,41)?	(31)?	
10	795 (5)	6	3	0,18	47	0,16	43	0,21	40	
11	855 (1/2)	0	0					_		
12	937 $(^{1}/_{2})$	0 ?	0 ?	—	—					
13	990 (1)	3	0	р						
14	1014 (3)	4	3	0,47	23	0,44	25	0,52	22	
15	1044 (7)	10	3	0,15	76	0,17	76	0,14	77	
16	1159(3)	4	4	0,80	23	0,81	24	0,79	21	
17	1206(5)	8	$2^{1/2}$	0,21	50	0,25	52	0,18	48	
18	1275(1)	$3^{1}/_{2}$	$3^{1}/_{2}$	0,74	20	0,64	21	0,84	20	
19	1377(2)	$4^{1}/_{2}$	$3^{1/2}$	0,63	23	0,62	24	0,65	23	
21	1451(0)	0	0	dp	16	1,03	18	0,92	15	
22	1560(3)	4	4	$0,\bar{8}7$	24	0,91	26	0,83	23	
23	1593(3)	5	5	0,79	30	0,80	31	0,77	28	
	1	1	L			1	1	F	1	

Tabelle 9. o-Jodtoluol.

¹⁰ K. W. F. Kohlrausch und A. Pongratz, S.-B. Akad. Wiss. Wien, Abt. IIb 143, 551 (1934); Mh. Chem. 65, 199 (1934).

E. Herz:

zusätzlich treten noch die folgenden schwachen Linien auf: 332 (0), 435 $(1/_2)$, 539 (0), 708 $(1/_2)$, 814 (0), 996 (1), 1214 (00?), 1352 (00?), 1381 (00).

Nr.	14	<i>i_</i>	i-	P. 614,	t= 48
1111		<i>76</i>	. U	e	J
1	171 (6 <i>sbd</i>)	$3^{1/2} d$	$3^{1/2} d$	0,76	505
2	261(5d)	$3 \overline{d}$	3 d	0,75	321
4	372 (5)	$2 \ d$	$\frac{1}{2}d$	0,47	196
6	471 (5)	2 d	$\frac{1}{2}d$	0,53	187
8	559 (5)	3 d	1d	0,67	196
9	677 (7)	6	0 d	0,17	334
11	747 (1 b)	0 d	0 d	·	
13	836 (6)	6	0 d	0,14	306
16	1023 (10)	$8^{1/2}$	1d	0,13	516
18	1088 (2 b)	$2^{1/2} d$	$\frac{1}{2}d$	0,28	146
20	1156 (3)	$2^{1/2} d$	1d	0,89	168
21	1214 (00)	0 d	0 d		
22	$1262 (3 d^{\uparrow})$	2 d	$\frac{1}{2}d$	0,38	127
23	1305 (4 bd)	$3^{1/2} d$	$\frac{1}{2}d$	0,17	208
28	1485 (2 s)	0 d	0 d	·	
29	1589(5d)	4	$3^{1/2} d$	0,71	342
30	1612(5d)	4	$3^{1/2} d$	0,73	345
31	3065 (2 b)	$1^{1/2} d$		0,42	360
32	3367 (00)	00d	·		

Tabelle 10. o-Chloranilin.

Tabelle 11. o-Chlorphenol.

					monto	Einzelmessungen			
Nr.				MILLER	werte	P. 697,	t = 76	P. 698, t	=1021/2
	Δv	i_{π}	i _o	e	J	ę .	J	e	J
1	173 (10 <i>b</i>)	6d	$5^{1/2}d$	0,69	74	0,70	77	0,69	71
3	266~(5~b)	$3^{1/2}d$	$3^{1/2} d$	0,95	36	(1,14)	38	0,95	34
5	377~(6~b)	5 d	2	0,42	28	0,49	29	0,36	27
8	496 (3 b)	3 d	$2^{1/2} d$	0,66	20	0,70	18	0,63	22
10	560 (6)	5	3	0,53	36	0,49	35	0,56	37
12	698 (8)	7	$\frac{1}{2}$	0,20	42	0,22	45	0,18	40
16	834 (6)	5b	$\frac{1}{2}d$	0,22	35	0,27	38	0,18	32
17	$887 (^{1}/_{2})$	$\frac{1}{2}$	$\frac{1}{2}$				<u> </u>		
19	1029 (12)	8	1	0,11	65	0,09	66	0,13	64
23	1125 (3)	2	$\frac{1}{2}$	р		р		р	
24	1154 (3)	2	2	0,86	19	0,81	18	0,91	20
26	1249 (3 <i>b</i>)	5 b	0	• p		р		р	
28	1290 (3 <i>b</i>)	$4^{1/2}b$	0	0,30	19	0,30	19	0,31	20
29	$1334 (^{1}/_{2})$	$\frac{1}{2}$	0				<i>→</i>		
30	1376 (0)	1/2	0			_			
31	1405(0)	1/2	0		·	1 —		_	
33	1480 (1)	$1^{1}/_{2}$	¹ /2			—		_	
34	1584(3)	165	51/.b	0.74	34	0.71	34	0.78	24
35	1592~(5~d)	۲°°	0/20	0,14	0x	0,11	0Ŧ	0,10	94

....

9. o-Chlorphenol. $Cl \cdot C_6H_4 \cdot OH$ (Tabelle 11). Aufnahmen mit großer Dispersion: A 215, m. F. I, t = 67, Ugd. s., Rsp. mst.; A 216, m. F. C., t = 47, Ugd. s., Rsp. mst.; n = 72.

 $\Delta v = 173 \ (10 \ sb) \ (\pm \ e); \ 250 \ (^{1}{}_{2}) \ (k, \ e); \ 266 \ (5 \ bd) \ (k, \ \pm \ e); \ 345 \ (0) \ (e); \ 377 \ (6 \ b) \ (k, \ \pm \ e, \ f); \ 405 \ (0) \ (e); \ 444 \ (^{1}{}_{2}\ ?) \ (k, \ e); \ 496 \ (3 \ b) \ (k, \ e, \ f); \ 533 \ (^{1}{}_{2}) \ (e); \ 560 \ (6) \ (k, \ e); \ 648 \ (0) \ (e); \ 679 \ (8) \ (k, \ i, \ e, \ f); \ 706 \ (^{1}{}_{2}) \ (k, \ e); \ 747 \ (^{1}{}_{2}) \ (k, \ e); \ 814 \ (1) \ (k, \ e); \ 834 \ (6) \ (k, \ e, \ f); \ 887 \ (^{1}{}_{2}) \ (e); \ 1000 \ (1) \ (k, \ e); \ 747 \ (^{1}{}_{2}) \ (k, \ e); \ 814 \ (1) \ (k, \ e); \ 834 \ (6) \ (k, \ e, \ f); \ 887 \ (^{1}{}_{2}) \ (e); \ 1000 \ (1) \ (k, \ e); \ 1029 \ (12) \ (k, \ e); \ 1290 \ (12) \ (k, \ e); \ 1154 \ (^{1}{}_{2}) \ (k, \ e); \ 1125 \ (3) \ (k, \ e); \ 1154 \ (^{1}{}_{2}) \ (k, \ e); \ 1290 \ (3 \ b) \ (k, \ e); \ 1154 \ (^{1}{}_{2}) \ (k, \ e); \ 1290 \ (3 \ b) \ (k, \ e); \ 1334 \ (^{1}{}_{2}) \ (e); \ 1376 \ (0) \ (e); \ 1405 \ (0) \ (e); \ 1456 \ (0) \ (e); \ 1480 \ (1) \ (k, \ e); \ 1584 \ (3) \ (k, \ e, \ f); \ 1592 \ (5 \ d) \ (e); \ 3060 \ (8 \ d) \ (k, \ i); \ 3077 \ (6 \ b) \ (k, \ i); \ 3526 \ (0b \ ?) \ (k).$

In den Hauptlinien gute Übereinstimmung mit den Aufnahmen von Kohlrausch-Pongratz¹⁰; als neue Linien treten auf: 444 $(^{1}/_{2}, ?)$, 706 $(^{1}/_{2})$, 1033 (6 ?), 1207 (0), 1270 (0 ?), 1376 (0), 1405 (0), 1480 (1); neu ist die Aufspaltung der Linien Nr. 26/27 und 3060 (8 d)/3077 (6 b). Die Linien 250 $(^{1}/_{2})$, 405 (0), 1000 (1), 1059 $(^{1}/_{2})$ wurden als Verunreinigung mit dem Meta-Derivat, 345 (0), 648 (0), 814 (1), 1090 $(^{1}/_{2})$ mit dem Para-Derivat angesehen.

10. o-Chlor-Fluor-Benzol. $Cl \cdot C_6H_4 \cdot F$ (Tabelle 12). Aufnahmen mit großer Dispersion: A 260, m. F. I, t = 41; A 261, m. F. C., t = 78; n = 82.

 $\Delta v = 168 \ (12 \ b) \ (\pm \ e); \ 230 \ (4) \ (k, \ i, \ e); \ 268 \ (6 \ b) \ (k, \ i, \ \pm \ e), \ 375 \ (7 \ \uparrow) \\ (\pm \ e, \ f); \ 496 \ (7) \ (k, \ \pm \ e, \ f); \ 536 \ (3 \ b) \ (k, \ e); \ 554 \ (6 \ b) \ (k, \ i, \ e); \ 680 \ (11) \ (k, \ i, \ \pm \ e, \ f); \ 536 \ (3 \ b) \ (k, \ e); \ 554 \ (6 \ b) \ (k, \ i, \ e); \ 680 \ (11) \ (k, \ i, \ \pm \ e, \ f); \ 850 \ (^1/_2) \ (k, \ e); \ 891 \ (^1/_2 \ ?) \ (e); \ 1002 \ (1) \ (k, \ e); \ 1030 \ (12) \ (k, \ i, \ g, \ f, \ e); \ 1070 \ (4) \\ (k, \ e); \ 1126 \ (6) \ (k, \ i, \ e); \ 1157 \ (5) \ (k, \ i, \ f, \ e); \ 1237 \ (8 \ b) \ (k, \ f, \ e); \ 1264 \ (6) \ (k, \ f, \ e); \ 1288 \ (^1/_2) \ (k, \ e); \ 1394 \ (1) \ (k, \ e); \ 1423 \ (1) \ (k, \ e); \ 1452 \ (1) \ (k, \ e); \ 1482 \ (3 \ b) \ (k, \ e); \ 1586 \ (3) \ (k, \ f, \ e); \ 1598 \ (7) \ (k, \ f, \ e); \ 3070 \ (10) \ (k, \ i); \ 3084 \ (6) \ (k, \ i).$

			Mittol	Torto		Einzelm	lessungen		
Nr.				TRUCCEL	werte	P. 737,	t = 74	P. 738,	t = 69
	Δν	i_{π}	i_{σ}	ę	J	Q	J	Q	J
1	168 (12b)	86	76	0,74	79	(0,614)	826	0.870	752
2	230 (4)	3	3	0,74	15	(0, 887)	166	0,600	131
3	268 (6b)	5d	$4^{1/2} d$	0,87	36	0,865	358	dp	
4	375 (7)	5	1/2	0,41	21	0,372	199	0,440	214
5	496 (7)	5	$2^{1/2}$	0,48	21	0,518	199	0,441	219
6	536 (3 b)	4	2	0 46	21	0.481	202	0.451	211
7	554~(6~b)	$5^{1}/_{2}$	2	J ^{0,±0}	01	0,401	000	0,401	911
8	680 (11)	9	$\frac{1}{2}$	0,13	43	0,139	441	0,129	418
10	755 (1)	0	. 0						
12	826 (9)	7	2	0,18	23	0,158	220	0,211	247
16	1030 (12)	11	3	0,08	68	0,075	662	0,078	702
17	1070 (4)	4d	1 d	0,34	11	0,341	110	p	
18	1126(6)	5	3	0,49	16	(0,353)	165	(0, 632)	158
19	1157 (5)	4	3	0,80	12	(0,573)	118	(1,023)	130
20	1237 (8 b)	8	1/2	0,15	35	0,110	374	0,188	329
21	1264(6)	4	1/2	р		р		р	
26	1482(3b)	$\frac{1}{2}d$	0 d						
27	1586 (3)	80	76	0,64	38	0,541	402	0,738	366
28	T988 (A)]			1	1			

Tabelle 12. o-Chlor-Fluor-Benzol.

Monatshefte für Chemie. Bd. 76/1.

E. Herz:

Mit den Angaben von Kohlrausch-Pongratz¹⁰ gute Übereinstimmung. Neu sind die Linien 698 (1), 807 (1?), 850 ($^{1}/_{2}$), 891 ($^{1}/_{2}$?), 1002 (1), 1288 ($^{1}/_{2}$), 1394 (1), 1423 (1), 1452 (1), 3084 (6) und die Aufspaltung der Linie 1589 (6 b) in 1586 (3) + 1598 (7).

11. o-Dichlorbenzol. $Cl \cdot C_6H_4 \cdot Cl$ (Tabelle 13). Aufnahme mit großer Dispersion: A 182, m. F. I, t = 58, Ugd. ms., Rsp. mst., Verfärbung, n = 41.

 $\Delta \nu = 150 \ (12 \ sb) \ (\pm \ e); \ 203 \ (7 \ d) \ (\pm \ e, \ \pm \ f); \ 237 \ dopp. ? \ (2 \ ssbd) \ (e);$ $300 \ (0) \ (e); \ 332 \ (3) \ (\pm \ e, \ f); \ 428 \ (6) \ (\pm \ e, \ f); \ 468 \ (5 \ bd) \ (\pm \ e); \ 485 \ (6 \ d) \ (\pm \ e);$ $659 \ (10 \ s) \ (\pm \ e, \ f); \ 749 \ (0) \ (e); \ 793 \ (00) \ (e); \ 853 \ (00) \ (e); \ 1002 \ (^1/_2 \ ?) \ (e); \ 1019 \ (1-2 \ d) \ (e); \ 1039 \ (12 \ s) \ (e, \ f, \ g); \ 1128 \ (8 \ d) \ (e, \ f); \ 1158 \ (3) \ (e); \ 1169 \ (^1/_2 \ (e); \ 1273 \ (4) \ (e, \ f); \ 1345 \ (0) \ (e); \ 1390 \ (0) \ (e); \ 1456 \ (0) \ (e); \ 1571 \ (8 \ d) \ (e, \ f); \ 1609 \ (^1/_2) \ (e); \ 3072 \ (0) \ (e); \ 3143 \ (2) \ (e).$

Gute Übereinstimmung mit den Angaben von Dadieu-Kohlrausch-Pongratz¹¹; außerdem wurden noch folgende schwache Linien gefunden: 300 (0), 793 (00), 853 (00), 1002 (1/2), 1169 (1/2), 1345 (0), 1390 (0), 1456 (0), 1609 (1/2).

12. o-Brom-Chlor-Benzol. $Br \cdot C_6H_4 \cdot Cl$ (Tabelle 14). Aufnahme mit großer Dispersion: A 213, m. F. I, t = 82, sehr schwach, Verfärbung, n = 14.

 $\Delta \nu = 142 \ (6 \ bd) \ (e); \ 165 \ (4) \ (e); \ 231 \ (2 \ d) \ (e); \ 281 \ (3) \ (e); \ 386 \ (4) \ (e); \ 441 \ (7 \ b) \ (e); \ 460 \ (3) \ (e); \ 559 \ (^1/_2) \ (e); \ 645 \ (7) \ (e); \ 729 \ (^1/_2) \ (e); \ 755 \ (1) \ (e); \ 841 \ (0 \ sb) \ (e); \ 1023 \ (0) \ (e); \ 1036 \ (12) \ (e); \ 1122 \ (6 \ b) \ (e); \ 1158 \ (3) \ (e); \ 1221 \ (^1/_2) \ (e); \ 1269 \ (3) \ (e); \ 1308 \ (0) \ (e); \ 1377 \ (^1/_2) \ (e); \ 1452 \ (4 \ b) \ (e); \ 1566 \ (6) \ (e); \ 1573 \ (6) \ (e); \ 3061 \ (4 \ b) \ (e).$

Gegenüber den Beobachtungen von Kohlrausch-Pongratz¹⁰ erscheint die

				3544-0			Einzelm	essungen		
Nr.				MILLUE			P. 673, t=75		P. 674, $t = 79$	
	Δν	i_{π}	iσ	e	J	Q	J	ę	J	
1	150 (12 sb)	6d	$5^{1/2}d$	0.83	36	0.77	90	0.89	83	
2	203(7 d)	3d	3d	0,79	33	0.76	34	0,82	31	
3	237(2sb)	2d	$1^{1/2} d$	0,82	33	0,84	31	0,81	35	
6	428 (6)	3d	2	0,95	19	0,86	17	1,04	21	
7	468(5b)	5d	0	10.00	04	0.99		0.41	95	
8	485(6d)	5d	0	<i>0,31</i>	34	0,33	53	0,41	30	
9	659(10s)	5	0	0,26	32	0,25	31	0,28	33	
10	749 (0)	1/2	0	p?		-		·		
14	$1019 (^{3}/_{2} d)$	1 d	0	p		_			·	
15	1039~(12 s)	$7^{1}/_{2}$	$\frac{1}{2}d$	0,16	46	0,15	49	0,17	45	
16	1128 (8d)	6	$\frac{1}{2}d$	0,25	34	0,25	35	0,26	33	
17	1158 (3)	$\frac{1}{2}d$	$\frac{1}{2}d$	0,76	19	0,74	18	0,78	20	
19	1273 (4)	0	0	(0,95)	(14)	(1,17)	(14)	(0,73)	(14)	
23	1571 (8 d)	4	$2^{1/2}$	0,90	30	0,88	28	0,92	33	
24	1609 (1/2)	1/2	0	p?		-				
25	3072 (6)	2	0	0,47	45	0,47	45	р		

Tabelle 13. o-Dichlorbenzol.

¹¹ A. Dadieu, K. W. F. Kohlrausch und A. Pongratz, S.-B. Akad. Wiss. Wien, Abt. IIb 141, 747 (1932); Mh. Chem. 61, 426 (1932).

				35:44-1			Einzelm	Einzelmessungen					
Nr.				MILLOUGE	werte	P. 695, t=74		P. 696, t = 100					
	۵»	ⁱ n	i,	6	J	Q (J	e	J				
1	142 (15 b)	6						1					
2	165 (10)	5	$ 4^{1}/_{2}$	0,81	49	0,69	48	0,93	50				
3	231 (6)	11/2	1	1,05	21	dp	28	1,05	21				
4	281(7)	$1^{1}/_{2}$	1	dp	21	dp		1,02	21				
5	386(7)	$3^{1/2}$	1	0,70	24	_		0,70	24				
6	441 (7 b)	$4^{1/2}b$	2 b	0,62	41	(0,75)	42	0,62	40				
9	645(7)	$4^{1/2}$	0	0,37	25	0,28	25	0,47	26				
10	$729 \ (^{1}/_{2})$	0	0			_							
14	1036(12)	7	$\frac{1}{2}$	0,12	56	0,11	56	$0,\!15$	57				
15	1122~(6~b)	5	¹ /2	0,25	32	0,22	32	0,29	32				
16	1158(3)	2	2	0,73	17	0,71	17	0,76	18				
17	1221 (?)	3/4	¹ /2			_		-					
18	1269(3)	$2^{1/2}$	1	0,73	15	0,71	13	0,76	17				
19	1308 (0)	1/2	¹ /2	_									
20	$1377 \ (^{1}/_{2})$	0	0	—		-		-	—				
$\frac{22}{23}$	1566 (7) 1573 (7)	5	$4^{1}/_{2}$	0,77	34	0,75	34	0,80	35				

Tabelle 14. o-Brom-Chlor-Benzol.

Tabelle 15. o-Anisidin.

						Einzelmessungen			
Nr.				Mille:	iwerte	P. 703,	t=74	P. 704,	t=104
	Δu	i_{π}	i _o	Q	J	Q	<u> </u>	ę	J
1	180 (2 b)	$1^1/_2 d$	1	0,57	29	0,60	25	0,54	33
2	$239(3^{1}/_{2}b)$	$2^{1}/_{2}$	1/2	0,60	27	0,48	26	0,61	29
4	339 (1)	1	3/4	0,98	23	0,98	23	dp	
5	452 (0 ?)	1	$\frac{1}{2}$	_	—	_	-		_
6	512 (3)	5	2	0,52	41	0,56	42	0,48	39
8	583 (2)	2	2	0,79	23	0,89	26	0,69	21
10	755 (8)	14	5	0,17	135	0,18	134	0,16	137
11	841 (2)	5	3/4	0,35	29	0,35	30	0,36	28
12	1025(3)	7	3/4	0,18	44	р		0,18	44
13	1043 (4)	8	3/4	0,15	58	0,14	57	0,15	58
14	1158 (3)	$6^{1}/_{2}$	4	0,51	43	0,53	45	0,49	42
15	1188 (1)	4	1	р					
16	1227(1)	$4^{1}/_{2}$	1	0,34	20	р		0,34	20
17	1275 (3)	$7^{1}/_{2}$	$1^{1}/_{2}$	0,12	52	0,12	41	0,13	66
19	1340 (3)	$7^{1}/_{2}$	$1^{1}/_{2}$	0,14	46	0,13	46	0,16	46
20	1408 (0)	0	0			—		—	
21	$1458 (^{1}/_{2})$	4	2	0,57	18	0,50	18	0,64	18
22	1502 (1/2)	4	2	0,45	18	0,44	18	0,46	18
23	1591(3)	8	6	0 60	£9	0.60	<i>c</i> .9	0.69	64
24	1612 (3)	8	6	J ^{0,08}	03	0,09	00	0,08	04

2*

Linie 1569 (7) in 1566 (4) + 1573 (4) aufgespalten; in der wegen der Lichtempfindlichkeit der Substanz unterexponierten Aufnahme fehlen einige schwache Linien, die früher gefunden wurden.

13. o-Anisidin. $NH_2 \cdot C_6H_4 \cdot OCH_3$ (Tabelle 15). Aufnahme mit großer Dispersion: A 223, m. F. I, t = 56, Substanz verfärbt; n = 25.

$$\begin{split} & \Delta v = 180 \; (2 \; b) \; (e); \; 239 \; (1^{1}{}_{2} \; b) \; (e); \; 300 \; (1) \; (e); \; 339 \; (1) \; (e); \; 452 \; (0) \; (e\;?); \\ & 512 \; (3) \; (e); \; 545 \; (0), \; (e); \; 583 \; (2) \; (e); \; 731 \; (0\;?) \; (e); \; 755 \; (8) \; (e,\;f); \; 841 \; (2) \; (e); \\ & 1025 \; (3) \; (e); \; 1043 \; (5) \; (e); \; 1158 \; (3) \; (e); \; 1188 \; (1) \; (e); \; 1227 \; (1) \; (e); \; 1275 \; (3 \; d) \\ & (e); \; 1301 \; (^{1}{}_{2}) \; (e); \; 1340 \; (3 \; d) \; (e); \; 1408 \; (0) \; (e); \; 1458 \; (^{1}{}_{2}) \; (e); \; 1502 \; (^{1}{}_{2}) \; (e); \\ & 1591 \; (2^{1}{}_{2}) \; (e); \; 1612 \; (3^{1}{}_{2}) \; (e); \; 3067 \; (2) \; (e). \\ & \text{Gute Übereinstimmung mit den Angaben von $Reitz-Ypsilanti^{12}; $ neu $} \end{split}$$

Gute Übereinstimmung mit den Angaben von *Reitz-Ypsilanti*¹²; neu sind die Linien 300 (1), 452 ? (0), 545 (0), 731 (0 ?), 1188 (1), 1227 (1), 1301 $\binom{1}{2}$, 1408 (0).

14. o-Oxyanisol. $CH_3O \cdot C_6H_4 \cdot OH$ (Tabelle 16). Aufnahmen mit großer Dispersion: A 234, m. F. I, t = 84; A 245 m. F. C., t = 56; n = 64.

 $\Delta v = 186 (5 b) (\pm e); 239 (2) (k, e); 308 (3) (k, e); 346 (3) (e); 458 (2 b) (k, e); 500 (2) (k, e); 534 (6) (k, e); 566 (1) (e); 583 (6) (k, e); 728 (1) (k, e); 758 (12) (k, i, g, f, e); 835 (5) (k, e); 998 (1) (k, e); 1024 (3) (k, e); 1039 (8) (k, i, e); 1154 (7) (k, i, e); 1171 (3) (k, i, e); 1204 (2) (k, e); 1260 (8) (k, i, e); 1300 (4) (k, e); 1352 (1 sb) (k, e); 1451 (4 ssb) (k, e); 1503 (2 b) (k, e); 1595 (6)$

	}			Mittel	mo-to		$\mathbf{Einzelm}$	essungen	
Nr.				MITTER	werte	P. 724,	t = 72	P. 725,	t=76
	Δν	i_{π}	i_{σ}	Q	J	Q	J	ę	J
1	186 (5 b)	1	1	0,88	50	0,88	51	dp	50
2	239(2)	1	1	dp	26	dp?		dp	26
3	308 (4)	3	$2^{1/2}$	0,70?	31	dp	29	0,70	33
4	346 (3)	3	1	р	—	р		р	
5	458~(2~b)	2	2	0,92	31	0,97	31	0,87	31
6	500(2)	3	2	0,62	28	0,66	29	$0,\!58$	27
7	534(6)	5	4	0,67	47	0,64	48	0,71	46
9	583(6)	5	4	0,83	45	0,85	45	0,81	44
11	758(12)	12	3	0,14	171	0,13	178	0,16	164
12	835(5)	5	3/4	0,34	36	0,33	31	0,36	40
15	1039 (8)	10	2	0,14	81	0,13	83	0,15	79
$\frac{16}{17}$	1154 (7) 1171 (3)	6 3	4 0]0,52	50	0,53	50	0,53	50
18	1204(2)	3	1/2	[d]		[q]		[q]	
19	1260 (8)	8	3/2	0,19	67	0,19	67	p	
20	1300 (4)	4	3/2	0,38	29	0,38	29	p	
21	$1352\ (2\ b)$	3	0	0,69	24	р		0,69	24
22	1451~(4~sb)	3	2	0,97	32	0,91	33	1,03	31
23	1503 (2 b)	3	0	0,70	15	p		0,70	15
$\begin{array}{c} 24 \\ 25 \end{array}$	1595 (6) 1612 (4 <i>b</i>)	$\left. \right\} 8 sb$	7 sb	0,91	57	0,90	56	0,93	57

Tabelle 16. o-Oxyanisol.

¹² A. Reitz und G. Ypsilanti, S.-B. Akad. Wiss. Wien, Abt. IIb 144, 431 (1935); Mh. Chem. 66, 299 (1935).

(k, e, f); 1612 (4 b) (k, e); 2843 (3) (k); 2921 (2) (k); 3028 (2 ?) (k); 3056 (3) (k); 3069 (8) (k, i); 3621 (0 b) (k).

Im allgemeinen gute Übereinstimmung mit den Angaben von *Reitz-Ypsilanti*¹³; neu treten die Linien 566 (1), 998 (1), 1171 (3), 1612 (4 b), 3621 (0 b) auf; 3071 (9 b) erscheint aufgespalten in 3056 (3) + 3069 (8).

15. o-Dimethoxy-benzol. $CH_3O \cdot C_6H_4 \cdot OCH_3$. Aufnahmen mit großer Dispersion: A 236, m. F. I, $t = 90^{1/2}$; A 241, m. F. C., t = 62; n = 59.

 $\Delta \nu = 167 \ (3 \ b) \ (e); \ 207 \ (2 \ b) \ (\pm \ e); \ 279 \ (00) \ (e); \ 318 \ (^{1}/_{2}) \ (e); \ 377 \ (4 \ b) \ (e); \ 476 \ (2 \ b) \ (k, \ e); \ 534 \ (0) \ (e); \ 580 \ (4) \ (k, \ e); \ 730 \ (2) \ (k, \ i, \ e); \ 752 \ (12) \ (k, \ i, \ e, \ f); \ 1161 \ (6) \ (k, \ i, \ e, \ f); \ 1161 \ (6) \ (k, \ i, \ e, \ f); \ 1183 \ (2) \ (k, \ e); \ 1253 \ (5) \ (k, \ e); \ 1300 \ (1) \ (k, \ e); \ 1330 \ (8 \ b) \ (k, \ i, \ e, \ g); \ 1440 \ (1) \ (k, \ e); \ 1454 \ (5 \ b) \ (k, \ e, \ f); \ 1503 \ (2) \ (k, \ e); \ 1589 \ (9) \ (k, \ e, \ f); \ 2818 \ (2 \ b) \ (k); \ 3063 \ (6 \ b) \ (k); \ 3074 \ (8 \ b) \ (k).$

Gegenüber den Beobachtungen von Kohlrausch-Pongratz¹³ wurden folgende Linien neu gefunden: 279 (00), 318 (1/2), 1440 (1), 1503 (2), 3063 (6 b). Im übrigen recht gute Übereinstimmung.

				Witte			Einzelm	essungen	
Nr.				MILLE	lwerte	P. 603,	t=48	P. 604,	t=18
	Δν	i_{π}	i_{σ}	Q	J	ę	J	Q	J
1	175 (5 b)	$3^{1/2}$	3	[0,70]	[54]	[0,648	66	0,723	415]
2	234(3b)	$1^{1/2} b$	1	[0,74]	[32]	[0,673	36	0,769	290]
3	286(2 b)	1 b	$\frac{1}{2}$	[0, 65]	[22]	[0,703	23	0,617	207]
4	329(2)	$\frac{1}{2}d$	0	[0,60]	[15]	[0,399	13	0,694	161]
5	436 (1)	3/4	¹ /4	1,03	6	0,96	35	1,07	83
6	496 (7)	5	$3^{1/2}$	0,48	37	0,346	354	0,544	389
7	548 (0)	¹ /4	0		—				· —
8	586(4)	2	1	0,81	19	0,627	159	0,898	220
11	745 (12)	12	$3^{1}/_{2}$	0,11	97	0,088	95	0,124	986
15	990 (2)	4	$\frac{1}{2}$	0,28	10	0,182	8	0,327	417
16	1050 (9)	$9^{1}/_{2}$	$1^{1}/_{2}$	0,12	54^{*}	0,098	54*	0,138	536*
18	1158 (4)	4 ·	3	0,58	24	0,521	24	0,656	242
19	1196 (2)	4	1 d	0,23	18	0,154	19	0,273	181
20	1240 (6 b)	$8^{1}/_{2}$	1 d	0,11	41	0,072	408	0,125	424
22	1306 (3)	$3^{1/2}$	1	0,19	27	0,143	335	0,220	177
23	1376(3s)	3	$1^{1}/_{2}$	0,50	12	0,416	106	0,549	127
24	1446~(2~b)	3 sb	3 sb	0,51	16	0,633	17	0,451	154
26	1496(0)	1			—				
28	1601(7)	$8^{1}/_{2}$	7	0,59	44	0,544	458	0,612	416
29	2834 (1/2)	1		—					
30	2919 (5 b)	3		0,27	40	0,216	327	0,298	475
31	2952(2)	$1^{1/2} d$	_			—			
32	3005 (3)	$\frac{1}{2}$			_	-			—
33	3070 (6 b)	3 sb		0,44	46	0,314	26	0,502	449

Tabelle 17. o-Methoxy-methyl-benzol.

436, 1194 auf Überdeckung korrigiert; 604 dopp. Gewicht.

¹³ K. W. F. Kohlrausch und A. Pongratz, S.-B. Akad. Wiss. Wien, Abt. IIb 143, 358 (1934); Mh. Chem. 65, 6 (1934). 16. o-Methoxy-methyl-benzol. $CH_3 \cdot C_6H_4 \cdot OCH_3$ (Tabelle 17). Aufnahmen mit großer Dispersion: A 108, m. F. I, t = 36, Ugd. s., Sp. st.; A 109, o. F., t = 24, gelb geworden (nur im Violett brauchbar); n = 67.

 $\Delta v = 175 \ (5 \ ssb) \ (\pm \ e); \ 234 \ (3 \ b) \ (e); \ 286 \ (2 \ b) \ (\pm \ e); \ 329 \ (2) \ (e); \ 436 \ (1) \ (e); \ 496 \ (7 \ b) \ (k, \ \pm \ e, \ f); \ 548 \ (0) \ (k, \ e); \ 586 \ (4) \ (k, \ e); \ 610 \ (0) \ (k, \ e); \ 721 \ (1) \ (k, \ e); \ 745 \ (12) \ (k, \ i, \ \pm \ e, \ f, \ g); \ 783 \ (1) \ (k, \ e); \ 817 \ (^{1}_{2}) \ (k, \ e); \ 842 \ (1) \ (k, \ e); \ 721 \ (1) \ (k, \ e); \ 745 \ (12) \ (k, \ i, \ \pm \ e, \ f, \ g); \ 783 \ (1) \ (k, \ e); \ 817 \ (^{1}_{2}) \ (k, \ e); \ 842 \ (1) \ (k, \ e); \ 721 \ (1) \ (k, \ e); \ 745 \ (12) \ (k, \ i, \ \pm \ e, \ f, \ g); \ 783 \ (1) \ (k, \ e); \ 817 \ (^{1}_{2}) \ (k, \ e); \ 842 \ (1) \ (k, \ e); \ 721 \ (k) \ (k) \ (k); \ (k); \ (k); \ (k) \ (k); \$

Gute Übereinstimmung mit den Angaben von $Reitz-Ypsilanti^{12}$; neue Linien: 610 (0), 783 (1), 842 (1), 1031 (1), 1118 (00), 1285 (1), 1588 (2). Die Linie 817 (1 s) kann dem p-Derivat, die Linien 711 (1), 817 (1 s), 989 (1) können dem m-Derivat zugeordnet werden.

17. o-Chloranisol. $Cl \cdot C_6H_4 \cdot OCH_3$ (Tabelle 18). Aufnahmen mit großer Dispersion: A 237, m. F. I, t = 81; A 238, m. F. C., t = 62; n = 87.

 $\Delta \nu = 160 \ (6 \ ss \ bd) \ (k, \ \pm \ e); \ 204 \ (4 \ b) \ (\pm \ e); \ 288 \ (1 \ sb) \ (e); \ 410 \ (6 \ b) \ (k, \ \pm \ e, \ f); \ 546 \ (0) \ (e); \ 576 \ (1 \ b) \ (k, \ e); \ (k); \$

					1		Einzelm	essungen	
Nr.				Mitte	Iwerte	P. 718, 1	$t = 96^{1}/_{2}$	P. 719,	t = 127
	Δin	i_{π}	i_{σ}	6	J	ę	J	ę	J
1	160 (0 ssb)	6 d	6 d	0,84	80	0,85	60	0,82	101
2	204 (4 b)	$4^{1/2}d$	4	0,90	58	0,82	59	0,99	58
3	288(1b)	0	0						
4	410(6b)	6 b	$\frac{1}{2}d$	0,18	59	0,21	49	0,16	69
6	493 (7)	5	3	0,52	47	0,44	45	0,60	49
7	546(0)	1	1	—				<u> </u>	
8	576 (1 b)	$2^{1/2}$	$2^{1}/_{2}$	0,77	22	0,75	21	0,79	22
10	685 (10)	$7^{1}/_{2}$	1	0,15	65	0,16	69	0,14	62
12	753~(1~b)	$\frac{1}{2}$	1/2	0,75	15	0,75	17	0,75	13
13	796 (8)	$6^{1/2}$	1/2	0,18	41	0,18	51	0,19	32
14	844 (0)	0	0						
19	1041(12)	10	4	0,12	111	0,11	119	0,12	104
21	1092 (1/2)	2	2	0,65	15	0,65	15	dp?	
22	1133(1)	$3^{1/2}$	$3^{1}/_{2}$	0,53	17	0,53	17	dp ?	
23	1162(6)	5	5	0,86	48	0,98	49	0,74	47
24	1183 (4)	4	0	р		p '		р	
26	1250(7)	8	$\frac{1}{2}$	0,22	42	0,22	42	0,22	43
27	1274 (1/2)	$\frac{1}{2}$	0	—					
28	1300 (4)	5	$\frac{1}{2}$	0,34	30	0,35	29	0,33	30
29	1360(0)	0	0	—	—			<u> </u>	
3 0	1436 (1/2)	1 11/	11/	0.04	91	0.00		1.01	91
31	1463 (1/2)	$\int \frac{1^{-1}}{2}$	1-/2	0,94	41	0,00	22	1,01	41
32	1486(2)	$1^{1/2}$	$1^{1/2}$	0,87	18	0,85	20	0,89	16
33	1576 (6)	$\int \frac{7}{5}$	61/ b	0.80	52	0.80	50	0.80	55
34	1588(6)	J	0/20	. 0,00	02	0,00		0,00	00

Tabelle 18. o-Chloranisol.

611 (0?) (e); 685 (10) (k, e, f); 712 (1) (k, e); 753 (1 b) (k, e); 785 $\binom{1}{2}$ (k, e); 796 (8) (k, i, e, f); 844 (0) (k, e); 880 (0) (k, e); 925 (0) (k, e); 995 (2) (k, e); 1025 (2) (k, e); 1041 (12) (k, i, e, f, g); 1065 (1) (k, e); 1092 $\binom{1}{2}$ (k, e); 1133 (1) (k, e); 1162 (6) (k, e, f); 1183 (4) (k, e); 1208 (0) (k, e); 1250 (7) (k, e); 1274 (2) (k, e); 1300 (4) (k, e); 1360 (0) (k, e); 1436 $\binom{1}{2}$ (k, e); 1463 $\binom{1}{2}$ (k, e); 1486 (2) (k, e); 1576 (6) (k, e); 1588 (6) (k, e); 2831 (2 d) (k); 2945 (2) (k, i); 3004 $\binom{1}{2}$ (k, i); 3068 (9) (k, i); 3076 (8 b) (k).

Gegenüber den Messungen von Reitz-Ypsilanti¹² wurden folgende Linien neu gefunden: 444 $(1/_2)$, 611 (0!), 785 $(1/_2)$, 880 (0), 925 (0), 995 (2), 1065 (1), 1092 $(1/_2)$, 1208 (0), 1360 (0); die Linie 3072 (10 b) erscheint aufgespalten in 3068 (9) + 3076 (8 b).

18. o-Bromanisol. $Br \cdot C_6H_4 \cdot OCH_3$ (Tabelle 19). Aufnahmen mit großer Dispersion: A 217, m. F. I, Substanz verfärbt, t = 76; A 218, m. F. I, t = 71, Substanz eingeschmolzen; A 219, m. F. C., Substanz verfärbt; n = 41.

 $\Delta \nu = 146 \ (7 \ sb) \ (\pm \ e); \ 167 \ (5 \ sb) \ (\pm \ e); \ 218 \ (0 \ ?) \ (e); \ 280 \ (2) \ (\pm \ e, \ f); \\ 325 \ (4 \ b) \ (\pm \ e); \ 437 \ (0) \ (e); \ 482 \ (4 \ d) \ (e); \ 542 \ (0 \ ?) \ (e); \ 569 \ (^1/_2) \ (e); \ 659 \ (5) \\ (e); \ 708 \ (0) \ (e); \ 749 \ (0) \ (e); \ 792 \ (5) \ (e, \ f); \ 840 \ (0) \ (e); \ 997 \ (0 \ ?) \ (e); \ 1022 \ (^1/_2) \\ (e); \ 1032 \ (10) \ (k, \ e); \ 1054 \ (1) \ (e); \ 1082 \ (0) \ (e); \ 1124 \ (0) \ (e); \ 1161 \ (4) \ (e); \ 1180 \\ \end{cases}$

				Mitter	manta	_	Einzelm	essungen	
Nr.				muser	werte	P. 701,	t=72	P. 702,	t = 108
	Δv	i_{π}	i_{σ}	e	J	6	J	Q	J
1	146 (7 b)	51/2	$5^{1}/_{2}$	h					
$\frac{1}{2}$	167 (5 sb)	4	3	0,82	80	0,73	82	0,92	79
4	278 (3)	1/2	0	í p		р		q	
5	325(4b)	$4^{1/2}$	1	0,34	44	0,37	44	0,31	44
6	437 (0)	$\frac{1}{2}$	0		—	<u> </u>			—
7.	482 (4 d)	4	3/4	0,42	31	0,41	31	0,44	31
8	542(0)	3/4	0			—	—		
9	569 $(1/2)$	3/4	0	-	—				—
10	659(5)	$5^{1}/_{2}$	$^{1}/_{2}$	0,20	38	0,20	38	р	
11	708 (0)	$\frac{1}{2}$	0	<u> </u>	—				—
12	749 (0)	$\frac{1}{2}$	$^{1}/_{2}$	—	—			—	
13	792(5)	$5^{1/2}$	1/2	0,23	35	0,31	36	0,16	35
14.	838 (0)	. 0 .	0.			—			
15	997 (1)	1	1/2	р		р			
17	1032(10)	. 8	$2^{1/2}$	0,17	82	0,19	75	0,15	89
18	1054 (1)		1/2		—				—
19	1082 (0)	1/2	0			—		—	
20	1124 (0)	1/2	0.	<u> </u>					
21		4	3	0,74	31	0,78	32	0,69	31
22	1180 (2)	. 4 .	1 1	p .		p		p	<u> </u>
23	1248 (6)	. 5	. <u>I</u> .	0,33	40 97	0,47	43	0,20	38
25	1294 (3)	4	11/2	0,28	25	р		0,28	20
20	1451(1)			0.70	10	0.00	10	0.76	10
27	1479(1)		L	0,79	18	0,82	18	0,70	18
_ 48 90	1501 (0)	5 sb	4 sb	0,82	42	0,84	41	0,81	44
49	Г төөт (ө)	13		í í					

Tabelle 19. o-Bromanisol.

(2) (e); 1248 (6) (k, e); 1273 (1) (e); 1294 (3) (e); 1451 (1) (e); 1479 (1) (e); 1570 (5) (k, e); 1586 (3) (e); 2839 (1) (k); 2928 (1?) (k); 3061 (6) + 3069 (4) (k).

Verglichen mit den Beobachtungen von *Reitz-Ypsilanti*¹² ergibt sich recht gute Übereinstimmung; hinzu kommen die Linien 1022 (1/2), 1082 (0), 1124 (0); außerdem wurde die Linie 3061 (3) in 3061 (6) + 3069 (4) aufgespalten gefunden.

19. o-Jodanisol. $J \cdot C_6 H_4 \cdot OCH_3$ (Tabelle 20). Eine Aufnahme mit großer Dispersion konnte wegen Verfärbung der Substanz nicht durchgeführt werden.

20. o-Bromphenol. Br·C₆H₄·OH (Tabelle 21). Aufnahmen mit großer Dispersion: A 226, m. F. I, t = 55, Substanz verfärbt; n = 31.

 $\Delta \nu = 1062 \ (7 \ sbd) \ (\pm \ e); \ 210 \ (1) \ (e); \ 260 \ (3 \ bd) \ (\pm \ e); \ 297 \ (7) \ (\pm \ e, \ f); \ 473 \ (2) \ (e); \ 552 \ (5) \ (e); \ 617 \ (0 \ ?) \ (e); \ 654 \ (7) \ (e, \ f); \ 702 \ (0 \ ?) \ (e); \ 750 \ (^{1}_{2}) \ (e); \ 830 \ (5) \ (e); \ 1023 \ (8) \ (e, \ f); \ 1027 \ (5) \ (e); \ 1041 \ (2) \ (e); \ 1116 \ (^{1}_{2}) \ (e); \ 1155 \ (3) \ (e); \ 1192 \ (0) \ (e); \ 1201 \ (0) \ (e); \ 1248 \ (2) \ (e); \ 1291 \ (2) \ (e); \ 1332 \ (^{1}_{2}) \ (e); \ 1453 \ (0) \ (e); \ 1473 \ (0) \ (e); \ 1579 \ (2^{1}_{2}) \ (e); \ 1596 \ (2) \ (e).$

Gute Übereinstimmung mit den Angaben von Kohlrausch-Ypsilanti¹⁴;

-				1			Einzelm	essungen	
Nr.				MILLE	Iwerte	Pl. 741, 1	$= 62^{1}/_{2}$	Pl. 742,	t = 57
	Δν	i_{π}	i_{σ}	Q	J	Q	J	e	J
1	140 (12 sb)	10 b	95	(0,67)	104	(0,564)	1132	(0,782)	948
2	248 (9)	8	5	0,41	86	0,406	904	0,420	834
3	301 (4)	5	1/2	0,35	38	(0,251)	363	0,463	395
4	370 (0)	$\frac{1}{2}$	1/2	p?		p?		p	.——
5	426 (0)	1/2	1/2	dp?		dp?		đp	
6	476 (4)	4	1	0,65	25	0,646	247	0,663	258
7	540 (0)	1/2	1/2	dp	10	(1, 476)	104	dp	
8	572 (2)	$\frac{1}{2}$	1/2	dp	13	(1, 332)	133	0,982	136
9	645 (7)	7	1	$0, \bar{1}7$	45	0,144	461	0,212	440
10	748 (2)	$\frac{1}{2}$	$\frac{1}{2}$,				
11	789 (6)	7	1 5	0,18	34	0,198	339	0,157	335
12	831 (0)	0	0						—
13	1018 (7)	11	5	0,22	57	0,219	606	0,217	538
14	1048 (3)	7	$\frac{1}{2}$	0,19	25	0,188	227	0,199	281
15	1159 (4)	$6^{1/2}$	5	0 50	91	0 500	900	0 549	'990
16	1179 (3)	6	2	J ^{0,02}	91	0,000	209	0,045	320
17	1243 (6)	11	3	0,17	46	0,145	474	0,192	443
18	1287 (3)	7	3	0,33	29	0,279	266	0,371	305
19	1339 ($^{1}/_{2}$)	1	0		<u> </u>				
20	1449 (1)	4	3			—		<u> </u>	
21	1470 (2)	4	3	0,66	18	0,640	164	0,674	204
22	1572 (6 b)	10 b	95	0,76	51	0,706	503	0,812	528

Tabelle 20. o-Jodanisol.

¹⁴ K. W. F. Kohlrausch und G. Ypsilanti, S.-B. Akad. Wiss. Wien, Abt. IIb 144, 407 (1935); Mh. Chem. 66, 285 (1935).

				Mitto	Internet	ł	Einzelm	essungen	
Nr.				Milline	Iwerte	P. 707, t	$=71^{1}/_{2}$	P. 708,	t = 106
	Δv	i_{π}	i _σ	ę	J	Q	J	ę	J
1	162 (7 b)	6 b	6 b	0,82	109	0,89	111	0,75	107
2	210 (1)	1d	1 d	dp?		·	·	·	
3	260 (3 b)	$2^{1/2}$	$2^{1/2}$	0,71	29	0,66	24	0,76	33
4	297 (7)	6	4	0,34	75	0,30	76	0,39	75
5	473 (2)	2	3/4	0,59	15	0,63	14	(0,54)	15
6	552(5)	5	3	0,48	35	0,41	34	0,55	37
7	617 (0)	$\frac{1}{2}$	$\frac{1}{2}$	·			-		
8	654(7)	$5^{1}/_{2}$	0	0,15	39	0,15	39	0,15	39
9	702 (0 ?)	$\frac{1}{2}$	$\frac{1}{2}$			—		⁻	
11	830 (5)	6	0	0,14	39	0,13	39	0,15	39
12	1025 (8)	8	$2^{1/2}$	0,13	58	0,11	59	0,15	57
14	1041(2)	$\frac{1}{2}$	0			—			—
15	$1116 (^{1}/_{2})$	2	$\frac{1}{2}$	p					
16	1155(3)	$2^{1/2}$	• 1	0,56	14	0,53	14	0,60	13
19	1248(2)	5 d	2d	0,14	17	0,15	18	0,13	17
20	1291(2)	5 d	2d	0,28	20	(0,26)	21	(0,31)	20
21	$1332 (^{1}/_{2})$	³ /2	1/2						
22	1453 (0)	0	0]			
23	1473 (0)	0	0						-
24 อะ	$1579 (2^{1}/_{2})$	} 5	$4^{1}/_{2}$	0,72	24	0,67	25	0,76	22
Z 5	1990 (3)	J	14						

Tabelle 21. o-Bromphenol.

Tabelle 22. Dibrombenzol.

						ļ	Einzeln	nessungen	
Nr.				MIDDOLWEICE		P. 739, t=71		P. 740, $t = 49^{1}/2$	
	Δν	i _π	i _σ	6	J	ę	J	ę	J
$\frac{1}{2}$	128 (7) 136 (4)	$\left.\right\} 14 b$	13 b	dp		dp		dp	
3	217(5)	6	6	0,72	50	0,712	486	0,727	518
4	250 (5)	4	4	0,61	36	(1,091)	360	(0,607)	359
$5\\6$	358 (3) 375 (12)	16	4	0,19	170	0,173	1934	0,210	1472
7	430(1/2)	0	0	· _					
8	638 (7)	7	2	0,24	50	0,260	524	0,233	489
14	1000 (3)	2	1					— I	
16	1035(14)	18	4	0,08	162	0,076	1706	0,093	1555
18	1106 (7)	8	5	0,17	62	0,177	653	0,168	592
19	1158(4)	6	6	0,78	34	0,714	329	0,835	349
20	1268 (5)	6	6	0,83	30	0,811	286	0,852	308
21	1373 (1)	1	0						
22	1444 (1)	1/2	0						
23	1565 (8)	10	10	0,80	80	0,676	804	0,838	798

neu kommen die Linien 617 (0?), 702 (0?), 1027 (5), 1192 (0), 1201 (0), 1456 (0), 1473 (0) hinzu; aufgespalten erscheint die Linie 1584 (4 b) in 1579 $(2^{1}/_{2})$ + 1596 (2).

21. o-Dibrombenzol. Br \cdot C₆H₄ \cdot Br (Tabelle 22). Aufnahme mit großer Dispersion: A 265, m. F. I, t = $72^{1}/_{2}$; Ugd. s-m, Rsp. m.; n = 34.

 $\Delta v = 128 \ (9) \ (\pm e); \ 136 \ (6) \ (\pm e); \ 217 \ (5) \ (\pm e); \ 250 \ (5) \ (\pm e); \ 358 \ (3) \\ (e); \ 375 \ (12) \ (\pm e, \ f); \ 430 \ (^{1}_{2}) \ (e); \ 638 \ (7) \ (e, \ f); \ 746 \ (^{1}_{2}) \ (e); \ 778 \ (^{1}_{2}) \ (e); \\ 854 \ (0) \ (e); \ 989 \ (0) \ (e); \ 1000 \ (3) \ (e); \ 1013 \ (2) \ (e); \ 1035 \ (14) \ (e, \ f, \ g); \ 1070 \ (1) \\ (e); \ 1106 \ (7) \ (e); \ 1158 \ (4) \ (e); \ 1268 \ (5) \ (e); \ 1373 \ (1) \ (e); \ 1444 \ (1) \ (e); \ 1565 \ (8) \\ (e, \ f, \ g); \ 3063 \ (3) \ (e).$

Im allgemeinen gute Übereinstimmung mit den Angaben von Kohlrausch- $Y psilanti^{14}$; hinzu kommen einige schwache Linien: 430 ($^{1}/_{2}$), 746 ($^{1}/_{2}$), 778 ($^{1}/_{2}$), 854 (0), 1013 (2). Die Linie 135 (12 b) erscheint aufgespalten in 128 (9) + + 136 (6). 989 (0) wird als zum meta-, 1070 (1) als zum para-Derivat gehörig angesehen.